( 28 - 53 ) \cdot 4 + ( 124 \% 4 - 30 \% 5 )
Aromātai
-\frac{4827}{50}=-96.54
Tauwehe
-\frac{4827}{50} = -96\frac{27}{50} = -96.54
Tohaina
Kua tāruatia ki te papatopenga
-25\times 4+\frac{124}{100}\times 4-\frac{30}{100}\times 5
Tangohia te 53 i te 28, ka -25.
-100+\frac{124}{100}\times 4-\frac{30}{100}\times 5
Whakareatia te -25 ki te 4, ka -100.
-100+\frac{31}{25}\times 4-\frac{30}{100}\times 5
Whakahekea te hautanga \frac{124}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-100+\frac{31\times 4}{25}-\frac{30}{100}\times 5
Tuhia te \frac{31}{25}\times 4 hei hautanga kotahi.
-100+\frac{124}{25}-\frac{30}{100}\times 5
Whakareatia te 31 ki te 4, ka 124.
-100+\frac{124}{25}-\frac{3}{10}\times 5
Whakahekea te hautanga \frac{30}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-100+\frac{124}{25}-\frac{3\times 5}{10}
Tuhia te \frac{3}{10}\times 5 hei hautanga kotahi.
-100+\frac{124}{25}-\frac{15}{10}
Whakareatia te 3 ki te 5, ka 15.
-100+\frac{124}{25}-\frac{3}{2}
Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-100+\frac{248}{50}-\frac{75}{50}
Ko te maha noa iti rawa atu o 25 me 2 ko 50. Me tahuri \frac{124}{25} me \frac{3}{2} ki te hautau me te tautūnga 50.
-100+\frac{248-75}{50}
Tā te mea he rite te tauraro o \frac{248}{50} me \frac{75}{50}, me tango rāua mā te tango i ō raua taurunga.
-100+\frac{173}{50}
Tangohia te 75 i te 248, ka 173.
-\frac{5000}{50}+\frac{173}{50}
Me tahuri te -100 ki te hautau -\frac{5000}{50}.
\frac{-5000+173}{50}
Tā te mea he rite te tauraro o -\frac{5000}{50} me \frac{173}{50}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{4827}{50}
Tāpirihia te -5000 ki te 173, ka -4827.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}