Aromātai
\frac{25048}{23}\approx 1089.043478261
Tauwehe
\frac{2 ^ {3} \cdot 31 \cdot 101}{23} = 1089\frac{1}{23} = 1089.0434782608695
Tohaina
Kua tāruatia ki te papatopenga
\frac{25+\frac{426}{25-2}}{\frac{1}{25}}+1
Tāpirihia te 425 ki te 1, ka 426.
\frac{25+\frac{426}{23}}{\frac{1}{25}}+1
Tangohia te 2 i te 25, ka 23.
\frac{\frac{575}{23}+\frac{426}{23}}{\frac{1}{25}}+1
Me tahuri te 25 ki te hautau \frac{575}{23}.
\frac{\frac{575+426}{23}}{\frac{1}{25}}+1
Tā te mea he rite te tauraro o \frac{575}{23} me \frac{426}{23}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1001}{23}}{\frac{1}{25}}+1
Tāpirihia te 575 ki te 426, ka 1001.
\frac{1001}{23}\times 25+1
Whakawehe \frac{1001}{23} ki te \frac{1}{25} mā te whakarea \frac{1001}{23} ki te tau huripoki o \frac{1}{25}.
\frac{1001\times 25}{23}+1
Tuhia te \frac{1001}{23}\times 25 hei hautanga kotahi.
\frac{25025}{23}+1
Whakareatia te 1001 ki te 25, ka 25025.
\frac{25025}{23}+\frac{23}{23}
Me tahuri te 1 ki te hautau \frac{23}{23}.
\frac{25025+23}{23}
Tā te mea he rite te tauraro o \frac{25025}{23} me \frac{23}{23}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25048}{23}
Tāpirihia te 25025 ki te 23, ka 25048.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}