Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\left(24\times \frac{3}{4}+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\left(18+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Whakareatia te 24 ki te \frac{3}{4}, ka 18.
\left(18+\frac{12}{4}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tātaitia te \sqrt[3]{64} kia tae ki 4.
\left(18+3-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Whakawehea te 12 ki te 4, kia riro ko 3.
\left(21-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tāpirihia te 18 ki te 3, ka 21.
\left(21-10\right)^{2}
Tātaihia te \frac{1}{10} mā te pū o -1, kia riro ko 10.
11^{2}
Tangohia te 10 i te 21, ka 11.
121
Tātaihia te 11 mā te pū o 2, kia riro ko 121.