Aromātai
121
Tauwehe
11^{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(24\times \frac{3}{4}+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\left(18+\frac{12}{\sqrt[3]{64}}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Whakareatia te 24 ki te \frac{3}{4}, ka 18.
\left(18+\frac{12}{4}-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tātaitia te \sqrt[3]{64} kia tae ki 4.
\left(18+3-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Whakawehea te 12 ki te 4, kia riro ko 3.
\left(21-\left(\frac{1}{10}\right)^{-1}\right)^{2}
Tāpirihia te 18 ki te 3, ka 21.
\left(21-10\right)^{2}
Tātaihia te \frac{1}{10} mā te pū o -1, kia riro ko 10.
11^{2}
Tangohia te 10 i te 21, ka 11.
121
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}