Tauwehe
-\left(2x-11\right)\left(5x+2\right)
Aromātai
22+51x-10x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x^{2}+51x+22
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=51 ab=-10\times 22=-220
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -10x^{2}+ax+bx+22. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,220 -2,110 -4,55 -5,44 -10,22 -11,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -220.
-1+220=219 -2+110=108 -4+55=51 -5+44=39 -10+22=12 -11+20=9
Tātaihia te tapeke mō ia takirua.
a=55 b=-4
Ko te otinga te takirua ka hoatu i te tapeke 51.
\left(-10x^{2}+55x\right)+\left(-4x+22\right)
Tuhia anō te -10x^{2}+51x+22 hei \left(-10x^{2}+55x\right)+\left(-4x+22\right).
-5x\left(2x-11\right)-2\left(2x-11\right)
Tauwehea te -5x i te tuatahi me te -2 i te rōpū tuarua.
\left(2x-11\right)\left(-5x-2\right)
Whakatauwehea atu te kīanga pātahi 2x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
-10x^{2}+51x+22=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-51±\sqrt{51^{2}-4\left(-10\right)\times 22}}{2\left(-10\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-51±\sqrt{2601-4\left(-10\right)\times 22}}{2\left(-10\right)}
Pūrua 51.
x=\frac{-51±\sqrt{2601+40\times 22}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-51±\sqrt{2601+880}}{2\left(-10\right)}
Whakareatia 40 ki te 22.
x=\frac{-51±\sqrt{3481}}{2\left(-10\right)}
Tāpiri 2601 ki te 880.
x=\frac{-51±59}{2\left(-10\right)}
Tuhia te pūtakerua o te 3481.
x=\frac{-51±59}{-20}
Whakareatia 2 ki te -10.
x=\frac{8}{-20}
Nā, me whakaoti te whārite x=\frac{-51±59}{-20} ina he tāpiri te ±. Tāpiri -51 ki te 59.
x=-\frac{2}{5}
Whakahekea te hautanga \frac{8}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{110}{-20}
Nā, me whakaoti te whārite x=\frac{-51±59}{-20} ina he tango te ±. Tango 59 mai i -51.
x=\frac{11}{2}
Whakahekea te hautanga \frac{-110}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-10x^{2}+51x+22=-10\left(x-\left(-\frac{2}{5}\right)\right)\left(x-\frac{11}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{5} mō te x_{1} me te \frac{11}{2} mō te x_{2}.
-10x^{2}+51x+22=-10\left(x+\frac{2}{5}\right)\left(x-\frac{11}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-10x^{2}+51x+22=-10\times \frac{-5x-2}{-5}\left(x-\frac{11}{2}\right)
Tāpiri \frac{2}{5} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10x^{2}+51x+22=-10\times \frac{-5x-2}{-5}\times \frac{-2x+11}{-2}
Tango \frac{11}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10x^{2}+51x+22=-10\times \frac{\left(-5x-2\right)\left(-2x+11\right)}{-5\left(-2\right)}
Whakareatia \frac{-5x-2}{-5} ki te \frac{-2x+11}{-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10x^{2}+51x+22=-10\times \frac{\left(-5x-2\right)\left(-2x+11\right)}{10}
Whakareatia -5 ki te -2.
-10x^{2}+51x+22=-\left(-5x-2\right)\left(-2x+11\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te -10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}