Whakaoti mō x
x=\frac{3}{250000000000}=1.2 \cdot 10^{-11}
Graph
Tohaina
Kua tāruatia ki te papatopenga
20\times 10^{4}x=24\times 10^{-7}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
20\times 10000x=24\times 10^{-7}
Tātaihia te 10 mā te pū o 4, kia riro ko 10000.
200000x=24\times 10^{-7}
Whakareatia te 20 ki te 10000, ka 200000.
200000x=24\times \frac{1}{10000000}
Tātaihia te 10 mā te pū o -7, kia riro ko \frac{1}{10000000}.
200000x=\frac{3}{1250000}
Whakareatia te 24 ki te \frac{1}{10000000}, ka \frac{3}{1250000}.
x=\frac{\frac{3}{1250000}}{200000}
Whakawehea ngā taha e rua ki te 200000.
x=\frac{3}{1250000\times 200000}
Tuhia te \frac{\frac{3}{1250000}}{200000} hei hautanga kotahi.
x=\frac{3}{250000000000}
Whakareatia te 1250000 ki te 200000, ka 250000000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}