Whakaoti mō y
y=\frac{\sqrt{11}-6}{5}\approx -0.536675042
y=\frac{-\sqrt{11}-6}{5}\approx -1.863324958
Graph
Tohaina
Kua tāruatia ki te papatopenga
4y^{2}+12y+9+y^{2}=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Pahekotia te 4y^{2} me y^{2}, ka 5y^{2}.
5y^{2}+12y+9-4=0
Tangohia te 4 mai i ngā taha e rua.
5y^{2}+12y+5=0
Tangohia te 4 i te 9, ka 5.
y=\frac{-12±\sqrt{12^{2}-4\times 5\times 5}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 12 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 5\times 5}}{2\times 5}
Pūrua 12.
y=\frac{-12±\sqrt{144-20\times 5}}{2\times 5}
Whakareatia -4 ki te 5.
y=\frac{-12±\sqrt{144-100}}{2\times 5}
Whakareatia -20 ki te 5.
y=\frac{-12±\sqrt{44}}{2\times 5}
Tāpiri 144 ki te -100.
y=\frac{-12±2\sqrt{11}}{2\times 5}
Tuhia te pūtakerua o te 44.
y=\frac{-12±2\sqrt{11}}{10}
Whakareatia 2 ki te 5.
y=\frac{2\sqrt{11}-12}{10}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{11}}{10} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{11}.
y=\frac{\sqrt{11}-6}{5}
Whakawehe -12+2\sqrt{11} ki te 10.
y=\frac{-2\sqrt{11}-12}{10}
Nā, me whakaoti te whārite y=\frac{-12±2\sqrt{11}}{10} ina he tango te ±. Tango 2\sqrt{11} mai i -12.
y=\frac{-\sqrt{11}-6}{5}
Whakawehe -12-2\sqrt{11} ki te 10.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Kua oti te whārite te whakatau.
4y^{2}+12y+9+y^{2}=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Pahekotia te 4y^{2} me y^{2}, ka 5y^{2}.
5y^{2}+12y=4-9
Tangohia te 9 mai i ngā taha e rua.
5y^{2}+12y=-5
Tangohia te 9 i te 4, ka -5.
\frac{5y^{2}+12y}{5}=-\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
y^{2}+\frac{12}{5}y=-\frac{5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
y^{2}+\frac{12}{5}y=-1
Whakawehe -5 ki te 5.
y^{2}+\frac{12}{5}y+\left(\frac{6}{5}\right)^{2}=-1+\left(\frac{6}{5}\right)^{2}
Whakawehea te \frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{5}. Nā, tāpiria te pūrua o te \frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{12}{5}y+\frac{36}{25}=-1+\frac{36}{25}
Pūruatia \frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{12}{5}y+\frac{36}{25}=\frac{11}{25}
Tāpiri -1 ki te \frac{36}{25}.
\left(y+\frac{6}{5}\right)^{2}=\frac{11}{25}
Tauwehea y^{2}+\frac{12}{5}y+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{6}{5}\right)^{2}}=\sqrt{\frac{11}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{6}{5}=\frac{\sqrt{11}}{5} y+\frac{6}{5}=-\frac{\sqrt{11}}{5}
Whakarūnātia.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}