Whakaoti mō x
x=1
x=7
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( 2 x - 5 ) ( x - 4 ) - 7 = ( x - 2 ) ( x - 3 )
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-13x+20-7=\left(x-2\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-5 ki te x-4 ka whakakotahi i ngā kupu rite.
2x^{2}-13x+13=\left(x-2\right)\left(x-3\right)
Tangohia te 7 i te 20, ka 13.
2x^{2}-13x+13=x^{2}-5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-13x+13-x^{2}=-5x+6
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-13x+13=-5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-13x+13+5x=6
Me tāpiri te 5x ki ngā taha e rua.
x^{2}-8x+13=6
Pahekotia te -13x me 5x, ka -8x.
x^{2}-8x+13-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}-8x+7=0
Tangohia te 6 i te 13, ka 7.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Tāpiri 64 ki te -28.
x=\frac{-\left(-8\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{8±6}{2}
Ko te tauaro o -8 ko 8.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{8±6}{2} ina he tāpiri te ±. Tāpiri 8 ki te 6.
x=7
Whakawehe 14 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{8±6}{2} ina he tango te ±. Tango 6 mai i 8.
x=1
Whakawehe 2 ki te 2.
x=7 x=1
Kua oti te whārite te whakatau.
2x^{2}-13x+20-7=\left(x-2\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-5 ki te x-4 ka whakakotahi i ngā kupu rite.
2x^{2}-13x+13=\left(x-2\right)\left(x-3\right)
Tangohia te 7 i te 20, ka 13.
2x^{2}-13x+13=x^{2}-5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-13x+13-x^{2}=-5x+6
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-13x+13=-5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-13x+13+5x=6
Me tāpiri te 5x ki ngā taha e rua.
x^{2}-8x+13=6
Pahekotia te -13x me 5x, ka -8x.
x^{2}-8x=6-13
Tangohia te 13 mai i ngā taha e rua.
x^{2}-8x=-7
Tangohia te 13 i te 6, ka -7.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-7+16
Pūrua -4.
x^{2}-8x+16=9
Tāpiri -7 ki te 16.
\left(x-4\right)^{2}=9
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=3 x-4=-3
Whakarūnātia.
x=7 x=1
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}