Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-3x-5=6x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-5 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-5-6x=0
Tangohia te 6x mai i ngā taha e rua.
2x^{2}-9x-5=0
Pahekotia te -3x me -6x, ka -9x.
a+b=-9 ab=2\left(-5\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-10 b=1
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(2x^{2}-10x\right)+\left(x-5\right)
Tuhia anō te 2x^{2}-9x-5 hei \left(2x^{2}-10x\right)+\left(x-5\right).
2x\left(x-5\right)+x-5
Whakatauwehea atu 2x i te 2x^{2}-10x.
\left(x-5\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-5=0 me te 2x+1=0.
2x^{2}-3x-5=6x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-5 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-5-6x=0
Tangohia te 6x mai i ngā taha e rua.
2x^{2}-9x-5=0
Pahekotia te -3x me -6x, ka -9x.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -9 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2\times 2}
Whakareatia -8 ki te -5.
x=\frac{-\left(-9\right)±\sqrt{121}}{2\times 2}
Tāpiri 81 ki te 40.
x=\frac{-\left(-9\right)±11}{2\times 2}
Tuhia te pūtakerua o te 121.
x=\frac{9±11}{2\times 2}
Ko te tauaro o -9 ko 9.
x=\frac{9±11}{4}
Whakareatia 2 ki te 2.
x=\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{9±11}{4} ina he tāpiri te ±. Tāpiri 9 ki te 11.
x=5
Whakawehe 20 ki te 4.
x=-\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{9±11}{4} ina he tango te ±. Tango 11 mai i 9.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=5 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
2x^{2}-3x-5=6x
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-5 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-5-6x=0
Tangohia te 6x mai i ngā taha e rua.
2x^{2}-9x-5=0
Pahekotia te -3x me -6x, ka -9x.
2x^{2}-9x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2x^{2}-9x}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{9}{2}x=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{5}{2}+\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{121}{16}
Tāpiri \frac{5}{2} ki te \frac{81}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{4}\right)^{2}=\frac{121}{16}
Tauwehea x^{2}-\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{4}=\frac{11}{4} x-\frac{9}{4}=-\frac{11}{4}
Whakarūnātia.
x=5 x=-\frac{1}{2}
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}