Whakaoti mō x
x = \frac{49}{24} = 2\frac{1}{24} \approx 2.041666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-20x+25=\left(x+3\right)\left(4x-8\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25=4x^{2}+4x-24
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te 4x-8 ka whakakotahi i ngā kupu rite.
4x^{2}-20x+25-4x^{2}=4x-24
Tangohia te 4x^{2} mai i ngā taha e rua.
-20x+25=4x-24
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-20x+25-4x=-24
Tangohia te 4x mai i ngā taha e rua.
-24x+25=-24
Pahekotia te -20x me -4x, ka -24x.
-24x=-24-25
Tangohia te 25 mai i ngā taha e rua.
-24x=-49
Tangohia te 25 i te -24, ka -49.
x=\frac{-49}{-24}
Whakawehea ngā taha e rua ki te -24.
x=\frac{49}{24}
Ka taea te hautanga \frac{-49}{-24} te whakamāmā ki te \frac{49}{24} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}