Whakaoti mō x (complex solution)
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18.333333333+49.792303665i
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18.333333333-49.792303665i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
Tāpirihia te 30 ki te 100, ka 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-40 ki te 3x-50 ka whakakotahi i ngā kupu rite.
780x^{2}-28600x+260000+2000\times 1000=64000
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}-220x+2000 ki te 130.
780x^{2}-28600x+260000+2000000=64000
Whakareatia te 2000 ki te 1000, ka 2000000.
780x^{2}-28600x+2260000=64000
Tāpirihia te 260000 ki te 2000000, ka 2260000.
780x^{2}-28600x+2260000-64000=0
Tangohia te 64000 mai i ngā taha e rua.
780x^{2}-28600x+2196000=0
Tangohia te 64000 i te 2260000, ka 2196000.
x=\frac{-\left(-28600\right)±\sqrt{\left(-28600\right)^{2}-4\times 780\times 2196000}}{2\times 780}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 780 mō a, -28600 mō b, me 2196000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28600\right)±\sqrt{817960000-4\times 780\times 2196000}}{2\times 780}
Pūrua -28600.
x=\frac{-\left(-28600\right)±\sqrt{817960000-3120\times 2196000}}{2\times 780}
Whakareatia -4 ki te 780.
x=\frac{-\left(-28600\right)±\sqrt{817960000-6851520000}}{2\times 780}
Whakareatia -3120 ki te 2196000.
x=\frac{-\left(-28600\right)±\sqrt{-6033560000}}{2\times 780}
Tāpiri 817960000 ki te -6851520000.
x=\frac{-\left(-28600\right)±200\sqrt{150839}i}{2\times 780}
Tuhia te pūtakerua o te -6033560000.
x=\frac{28600±200\sqrt{150839}i}{2\times 780}
Ko te tauaro o -28600 ko 28600.
x=\frac{28600±200\sqrt{150839}i}{1560}
Whakareatia 2 ki te 780.
x=\frac{28600+200\sqrt{150839}i}{1560}
Nā, me whakaoti te whārite x=\frac{28600±200\sqrt{150839}i}{1560} ina he tāpiri te ±. Tāpiri 28600 ki te 200i\sqrt{150839}.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Whakawehe 28600+200i\sqrt{150839} ki te 1560.
x=\frac{-200\sqrt{150839}i+28600}{1560}
Nā, me whakaoti te whārite x=\frac{28600±200\sqrt{150839}i}{1560} ina he tango te ±. Tango 200i\sqrt{150839} mai i 28600.
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Whakawehe 28600-200i\sqrt{150839} ki te 1560.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Kua oti te whārite te whakatau.
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
Tāpirihia te 30 ki te 100, ka 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-40 ki te 3x-50 ka whakakotahi i ngā kupu rite.
780x^{2}-28600x+260000+2000\times 1000=64000
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}-220x+2000 ki te 130.
780x^{2}-28600x+260000+2000000=64000
Whakareatia te 2000 ki te 1000, ka 2000000.
780x^{2}-28600x+2260000=64000
Tāpirihia te 260000 ki te 2000000, ka 2260000.
780x^{2}-28600x=64000-2260000
Tangohia te 2260000 mai i ngā taha e rua.
780x^{2}-28600x=-2196000
Tangohia te 2260000 i te 64000, ka -2196000.
\frac{780x^{2}-28600x}{780}=-\frac{2196000}{780}
Whakawehea ngā taha e rua ki te 780.
x^{2}+\left(-\frac{28600}{780}\right)x=-\frac{2196000}{780}
Mā te whakawehe ki te 780 ka wetekia te whakareanga ki te 780.
x^{2}-\frac{110}{3}x=-\frac{2196000}{780}
Whakahekea te hautanga \frac{-28600}{780} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 260.
x^{2}-\frac{110}{3}x=-\frac{36600}{13}
Whakahekea te hautanga \frac{-2196000}{780} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 60.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=-\frac{36600}{13}+\left(-\frac{55}{3}\right)^{2}
Whakawehea te -\frac{110}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{55}{3}. Nā, tāpiria te pūrua o te -\frac{55}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{36600}{13}+\frac{3025}{9}
Pūruatia -\frac{55}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{290075}{117}
Tāpiri -\frac{36600}{13} ki te \frac{3025}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{55}{3}\right)^{2}=-\frac{290075}{117}
Tauwehea x^{2}-\frac{110}{3}x+\frac{3025}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{-\frac{290075}{117}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{55}{3}=\frac{5\sqrt{150839}i}{39} x-\frac{55}{3}=-\frac{5\sqrt{150839}i}{39}
Whakarūnātia.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Me tāpiri \frac{55}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}