Whakaoti mō x
x=-1
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-4 ki te x-4 ka whakakotahi i ngā kupu rite.
2x^{2}-12x+16=20-9x+x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-x ki te 4-x ka whakakotahi i ngā kupu rite.
2x^{2}-12x+16-20=-9x+x^{2}
Tangohia te 20 mai i ngā taha e rua.
2x^{2}-12x-4=-9x+x^{2}
Tangohia te 20 i te 16, ka -4.
2x^{2}-12x-4+9x=x^{2}
Me tāpiri te 9x ki ngā taha e rua.
2x^{2}-3x-4=x^{2}
Pahekotia te -12x me 9x, ka -3x.
2x^{2}-3x-4-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-3x-4=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Whakareatia -4 ki te -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Tāpiri 9 ki te 16.
x=\frac{-\left(-3\right)±5}{2}
Tuhia te pūtakerua o te 25.
x=\frac{3±5}{2}
Ko te tauaro o -3 ko 3.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{3±5}{2} ina he tāpiri te ±. Tāpiri 3 ki te 5.
x=4
Whakawehe 8 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{3±5}{2} ina he tango te ±. Tango 5 mai i 3.
x=-1
Whakawehe -2 ki te 2.
x=4 x=-1
Kua oti te whārite te whakatau.
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-4 ki te x-4 ka whakakotahi i ngā kupu rite.
2x^{2}-12x+16=20-9x+x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-x ki te 4-x ka whakakotahi i ngā kupu rite.
2x^{2}-12x+16+9x=20+x^{2}
Me tāpiri te 9x ki ngā taha e rua.
2x^{2}-3x+16=20+x^{2}
Pahekotia te -12x me 9x, ka -3x.
2x^{2}-3x+16-x^{2}=20
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-3x+16=20
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-3x=20-16
Tangohia te 16 mai i ngā taha e rua.
x^{2}-3x=4
Tangohia te 16 i te 20, ka 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
x=4 x=-1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}