Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}-16x+6-x\left(2x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te 4x-2 ka whakakotahi i ngā kupu rite.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x-3.
8x^{2}-16x+6-2x^{2}+3x=0
Hei kimi i te tauaro o 2x^{2}-3x, kimihia te tauaro o ia taurangi.
6x^{2}-16x+6+3x=0
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
6x^{2}-13x+6=0
Pahekotia te -16x me 3x, ka -13x.
a+b=-13 ab=6\times 6=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(6x^{2}-9x\right)+\left(-4x+6\right)
Tuhia anō te 6x^{2}-13x+6 hei \left(6x^{2}-9x\right)+\left(-4x+6\right).
3x\left(2x-3\right)-2\left(2x-3\right)
Tauwehea te 3x i te tuatahi me te -2 i te rōpū tuarua.
\left(2x-3\right)\left(3x-2\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te 3x-2=0.
8x^{2}-16x+6-x\left(2x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te 4x-2 ka whakakotahi i ngā kupu rite.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x-3.
8x^{2}-16x+6-2x^{2}+3x=0
Hei kimi i te tauaro o 2x^{2}-3x, kimihia te tauaro o ia taurangi.
6x^{2}-16x+6+3x=0
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
6x^{2}-13x+6=0
Pahekotia te -16x me 3x, ka -13x.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 6}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -13 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 6}}{2\times 6}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 6}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 6}
Whakareatia -24 ki te 6.
x=\frac{-\left(-13\right)±\sqrt{25}}{2\times 6}
Tāpiri 169 ki te -144.
x=\frac{-\left(-13\right)±5}{2\times 6}
Tuhia te pūtakerua o te 25.
x=\frac{13±5}{2\times 6}
Ko te tauaro o -13 ko 13.
x=\frac{13±5}{12}
Whakareatia 2 ki te 6.
x=\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{13±5}{12} ina he tāpiri te ±. Tāpiri 13 ki te 5.
x=\frac{3}{2}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{13±5}{12} ina he tango te ±. Tango 5 mai i 13.
x=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=\frac{2}{3}
Kua oti te whārite te whakatau.
8x^{2}-16x+6-x\left(2x-3\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-3 ki te 4x-2 ka whakakotahi i ngā kupu rite.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x-3.
8x^{2}-16x+6-2x^{2}+3x=0
Hei kimi i te tauaro o 2x^{2}-3x, kimihia te tauaro o ia taurangi.
6x^{2}-16x+6+3x=0
Pahekotia te 8x^{2} me -2x^{2}, ka 6x^{2}.
6x^{2}-13x+6=0
Pahekotia te -16x me 3x, ka -13x.
6x^{2}-13x=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{6x^{2}-13x}{6}=-\frac{6}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{13}{6}x=-\frac{6}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{13}{6}x=-1
Whakawehe -6 ki te 6.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-1+\left(-\frac{13}{12}\right)^{2}
Whakawehea te -\frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{12}. Nā, tāpiria te pūrua o te -\frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-1+\frac{169}{144}
Pūruatia -\frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{25}{144}
Tāpiri -1 ki te \frac{169}{144}.
\left(x-\frac{13}{12}\right)^{2}=\frac{25}{144}
Tauwehea x^{2}-\frac{13}{6}x+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{12}=\frac{5}{12} x-\frac{13}{12}=-\frac{5}{12}
Whakarūnātia.
x=\frac{3}{2} x=\frac{2}{3}
Me tāpiri \frac{13}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}