Whakaoti mō x (complex solution)
x=\frac{\sqrt{39}i}{6}+\frac{1}{2}\approx 0.5+1.040833i
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}\approx 0.5-1.040833i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+11x-4=-6x+11x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te -3x+4 ka whakakotahi i ngā kupu rite.
-6x^{2}+11x-4=5x+4
Pahekotia te -6x me 11x, ka 5x.
-6x^{2}+11x-4-5x=4
Tangohia te 5x mai i ngā taha e rua.
-6x^{2}+6x-4=4
Pahekotia te 11x me -5x, ka 6x.
-6x^{2}+6x-4-4=0
Tangohia te 4 mai i ngā taha e rua.
-6x^{2}+6x-8=0
Tangohia te 4 i te -4, ka -8.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+24\left(-8\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-6±\sqrt{36-192}}{2\left(-6\right)}
Whakareatia 24 ki te -8.
x=\frac{-6±\sqrt{-156}}{2\left(-6\right)}
Tāpiri 36 ki te -192.
x=\frac{-6±2\sqrt{39}i}{2\left(-6\right)}
Tuhia te pūtakerua o te -156.
x=\frac{-6±2\sqrt{39}i}{-12}
Whakareatia 2 ki te -6.
x=\frac{-6+2\sqrt{39}i}{-12}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{39}i}{-12} ina he tāpiri te ±. Tāpiri -6 ki te 2i\sqrt{39}.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
Whakawehe -6+2i\sqrt{39} ki te -12.
x=\frac{-2\sqrt{39}i-6}{-12}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{39}i}{-12} ina he tango te ±. Tango 2i\sqrt{39} mai i -6.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
Whakawehe -6-2i\sqrt{39} ki te -12.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2} x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
Kua oti te whārite te whakatau.
-6x^{2}+11x-4=-6x+11x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te -3x+4 ka whakakotahi i ngā kupu rite.
-6x^{2}+11x-4=5x+4
Pahekotia te -6x me 11x, ka 5x.
-6x^{2}+11x-4-5x=4
Tangohia te 5x mai i ngā taha e rua.
-6x^{2}+6x-4=4
Pahekotia te 11x me -5x, ka 6x.
-6x^{2}+6x=4+4
Me tāpiri te 4 ki ngā taha e rua.
-6x^{2}+6x=8
Tāpirihia te 4 ki te 4, ka 8.
\frac{-6x^{2}+6x}{-6}=\frac{8}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{6}{-6}x=\frac{8}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-x=\frac{8}{-6}
Whakawehe 6 ki te -6.
x^{2}-x=-\frac{4}{3}
Whakahekea te hautanga \frac{8}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=-\frac{4}{3}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=-\frac{13}{12}
Tāpiri -\frac{4}{3} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=-\frac{13}{12}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{13}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{39}i}{6} x-\frac{1}{2}=-\frac{\sqrt{39}i}{6}
Whakarūnātia.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2} x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}