Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-4x+1=\left(3x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
4x^{2}-4x+1=9x^{2}+12x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+2\right)^{2}.
4x^{2}-4x+1-9x^{2}=12x+4
Tangohia te 9x^{2} mai i ngā taha e rua.
-5x^{2}-4x+1=12x+4
Pahekotia te 4x^{2} me -9x^{2}, ka -5x^{2}.
-5x^{2}-4x+1-12x=4
Tangohia te 12x mai i ngā taha e rua.
-5x^{2}-16x+1=4
Pahekotia te -4x me -12x, ka -16x.
-5x^{2}-16x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
-5x^{2}-16x-3=0
Tangohia te 4 i te 1, ka -3.
a+b=-16 ab=-5\left(-3\right)=15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -5x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-1 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(-5x^{2}-x\right)+\left(-15x-3\right)
Tuhia anō te -5x^{2}-16x-3 hei \left(-5x^{2}-x\right)+\left(-15x-3\right).
-x\left(5x+1\right)-3\left(5x+1\right)
Tauwehea te -x i te tuatahi me te -3 i te rōpū tuarua.
\left(5x+1\right)\left(-x-3\right)
Whakatauwehea atu te kīanga pātahi 5x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{5} x=-3
Hei kimi otinga whārite, me whakaoti te 5x+1=0 me te -x-3=0.
4x^{2}-4x+1=\left(3x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
4x^{2}-4x+1=9x^{2}+12x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+2\right)^{2}.
4x^{2}-4x+1-9x^{2}=12x+4
Tangohia te 9x^{2} mai i ngā taha e rua.
-5x^{2}-4x+1=12x+4
Pahekotia te 4x^{2} me -9x^{2}, ka -5x^{2}.
-5x^{2}-4x+1-12x=4
Tangohia te 12x mai i ngā taha e rua.
-5x^{2}-16x+1=4
Pahekotia te -4x me -12x, ka -16x.
-5x^{2}-16x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
-5x^{2}-16x-3=0
Tangohia te 4 i te 1, ka -3.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, -16 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Pūrua -16.
x=\frac{-\left(-16\right)±\sqrt{256+20\left(-3\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-\left(-16\right)±\sqrt{256-60}}{2\left(-5\right)}
Whakareatia 20 ki te -3.
x=\frac{-\left(-16\right)±\sqrt{196}}{2\left(-5\right)}
Tāpiri 256 ki te -60.
x=\frac{-\left(-16\right)±14}{2\left(-5\right)}
Tuhia te pūtakerua o te 196.
x=\frac{16±14}{2\left(-5\right)}
Ko te tauaro o -16 ko 16.
x=\frac{16±14}{-10}
Whakareatia 2 ki te -5.
x=\frac{30}{-10}
Nā, me whakaoti te whārite x=\frac{16±14}{-10} ina he tāpiri te ±. Tāpiri 16 ki te 14.
x=-3
Whakawehe 30 ki te -10.
x=\frac{2}{-10}
Nā, me whakaoti te whārite x=\frac{16±14}{-10} ina he tango te ±. Tango 14 mai i 16.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{2}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-3 x=-\frac{1}{5}
Kua oti te whārite te whakatau.
4x^{2}-4x+1=\left(3x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
4x^{2}-4x+1=9x^{2}+12x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+2\right)^{2}.
4x^{2}-4x+1-9x^{2}=12x+4
Tangohia te 9x^{2} mai i ngā taha e rua.
-5x^{2}-4x+1=12x+4
Pahekotia te 4x^{2} me -9x^{2}, ka -5x^{2}.
-5x^{2}-4x+1-12x=4
Tangohia te 12x mai i ngā taha e rua.
-5x^{2}-16x+1=4
Pahekotia te -4x me -12x, ka -16x.
-5x^{2}-16x=4-1
Tangohia te 1 mai i ngā taha e rua.
-5x^{2}-16x=3
Tangohia te 1 i te 4, ka 3.
\frac{-5x^{2}-16x}{-5}=\frac{3}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\left(-\frac{16}{-5}\right)x=\frac{3}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}+\frac{16}{5}x=\frac{3}{-5}
Whakawehe -16 ki te -5.
x^{2}+\frac{16}{5}x=-\frac{3}{5}
Whakawehe 3 ki te -5.
x^{2}+\frac{16}{5}x+\left(\frac{8}{5}\right)^{2}=-\frac{3}{5}+\left(\frac{8}{5}\right)^{2}
Whakawehea te \frac{16}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{5}. Nā, tāpiria te pūrua o te \frac{8}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{16}{5}x+\frac{64}{25}=-\frac{3}{5}+\frac{64}{25}
Pūruatia \frac{8}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{49}{25}
Tāpiri -\frac{3}{5} ki te \frac{64}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{8}{5}\right)^{2}=\frac{49}{25}
Tauwehea x^{2}+\frac{16}{5}x+\frac{64}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{5}\right)^{2}}=\sqrt{\frac{49}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{8}{5}=\frac{7}{5} x+\frac{8}{5}=-\frac{7}{5}
Whakarūnātia.
x=-\frac{1}{5} x=-3
Me tango \frac{8}{5} mai i ngā taha e rua o te whārite.