Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2^{2}x^{2}-2x\left(-x\right)-3=-1
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-2x\left(-x\right)-3=-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-2x\left(-x\right)=-1+3
Me tāpiri te 3 ki ngā taha e rua.
4x^{2}-2x\left(-x\right)=2
Tāpirihia te -1 ki te 3, ka 2.
4x^{2}-2x^{2}\left(-1\right)=2
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+2x^{2}=2
Whakareatia te -2 ki te -1, ka 2.
6x^{2}=2
Pahekotia te 4x^{2} me 2x^{2}, ka 6x^{2}.
x^{2}=\frac{2}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2^{2}x^{2}-2x\left(-x\right)-3=-1
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-2x\left(-x\right)-3=-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-2x\left(-x\right)-3+1=0
Me tāpiri te 1 ki ngā taha e rua.
4x^{2}-2x\left(-x\right)-2=0
Tāpirihia te -3 ki te 1, ka -2.
4x^{2}-2x^{2}\left(-1\right)-2=0
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+2x^{2}-2=0
Whakareatia te -2 ki te -1, ka 2.
6x^{2}-2=0
Pahekotia te 4x^{2} me 2x^{2}, ka 6x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-2\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-2\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-2\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{48}}{2\times 6}
Whakareatia -24 ki te -2.
x=\frac{0±4\sqrt{3}}{2\times 6}
Tuhia te pūtakerua o te 48.
x=\frac{0±4\sqrt{3}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{12} ina he tāpiri te ±.
x=-\frac{\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{12} ina he tango te ±.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Kua oti te whārite te whakatau.