Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(4x^{6}-y^{6}\right)\left(4x^{6}+y^{6}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x^{3}-y^{3} ki te 2x^{3}+y^{3} ka whakakotahi i ngā kupu rite.
\left(4x^{6}\right)^{2}-\left(y^{6}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(4x^{6}\right)^{2}-y^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
4^{2}\left(x^{6}\right)^{2}-y^{12}
Whakarohaina te \left(4x^{6}\right)^{2}.
4^{2}x^{12}-y^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
16x^{12}-y^{12}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\left(4x^{6}-y^{6}\right)\left(4x^{6}+y^{6}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x^{3}-y^{3} ki te 2x^{3}+y^{3} ka whakakotahi i ngā kupu rite.
\left(4x^{6}\right)^{2}-\left(y^{6}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(4x^{6}\right)^{2}-y^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
4^{2}\left(x^{6}\right)^{2}-y^{12}
Whakarohaina te \left(4x^{6}\right)^{2}.
4^{2}x^{12}-y^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
16x^{12}-y^{12}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.