Whakaoti mō x (complex solution)
x=1
x=-1
x=-\sqrt{2}i\approx -0-1.414213562i
x=\sqrt{2}i\approx 1.414213562i
Whakaoti mō x
x=-1
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x^{2}+2\right)^{2}.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2x^{2}+2.
4x^{4}+4x^{2}+4-4-8=0
Pahekotia te 8x^{2} me -4x^{2}, ka 4x^{2}.
4x^{4}+4x^{2}-8=0
Tangohia te 4 i te 4, ka 0.
4t^{2}+4t-8=0
Whakakapia te t mō te x^{2}.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 4 mō te b, me te -8 mō te c i te ture pūrua.
t=\frac{-4±12}{8}
Mahia ngā tātaitai.
t=1 t=-2
Whakaotia te whārite t=\frac{-4±12}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=1 x=-\sqrt{2}i x=\sqrt{2}i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x^{2}+2\right)^{2}.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2x^{2}+2.
4x^{4}+4x^{2}+4-4-8=0
Pahekotia te 8x^{2} me -4x^{2}, ka 4x^{2}.
4x^{4}+4x^{2}-8=0
Tangohia te 4 i te 4, ka 0.
4t^{2}+4t-8=0
Whakakapia te t mō te x^{2}.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 4 mō te b, me te -8 mō te c i te ture pūrua.
t=\frac{-4±12}{8}
Mahia ngā tātaitai.
t=1 t=-2
Whakaotia te whārite t=\frac{-4±12}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-1
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}