Aromātai
\frac{484x^{2}}{225}
Whakaroha
\frac{484x^{2}}{225}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5\times 2x}{15}+\frac{3\times 4x}{15}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 5 ko 15. Whakareatia \frac{2x}{3} ki te \frac{5}{5}. Whakareatia \frac{4x}{5} ki te \frac{3}{3}.
\left(\frac{5\times 2x+3\times 4x}{15}\right)^{2}
Tā te mea he rite te tauraro o \frac{5\times 2x}{15} me \frac{3\times 4x}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{10x+12x}{15}\right)^{2}
Mahia ngā whakarea i roto o 5\times 2x+3\times 4x.
\left(\frac{22x}{15}\right)^{2}
Whakakotahitia ngā kupu rite i 10x+12x.
\frac{\left(22x\right)^{2}}{15^{2}}
Kia whakarewa i te \frac{22x}{15} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{22^{2}x^{2}}{15^{2}}
Whakarohaina te \left(22x\right)^{2}.
\frac{484x^{2}}{15^{2}}
Tātaihia te 22 mā te pū o 2, kia riro ko 484.
\frac{484x^{2}}{225}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
\left(\frac{5\times 2x}{15}+\frac{3\times 4x}{15}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 5 ko 15. Whakareatia \frac{2x}{3} ki te \frac{5}{5}. Whakareatia \frac{4x}{5} ki te \frac{3}{3}.
\left(\frac{5\times 2x+3\times 4x}{15}\right)^{2}
Tā te mea he rite te tauraro o \frac{5\times 2x}{15} me \frac{3\times 4x}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{10x+12x}{15}\right)^{2}
Mahia ngā whakarea i roto o 5\times 2x+3\times 4x.
\left(\frac{22x}{15}\right)^{2}
Whakakotahitia ngā kupu rite i 10x+12x.
\frac{\left(22x\right)^{2}}{15^{2}}
Kia whakarewa i te \frac{22x}{15} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{22^{2}x^{2}}{15^{2}}
Whakarohaina te \left(22x\right)^{2}.
\frac{484x^{2}}{15^{2}}
Tātaihia te 22 mā te pū o 2, kia riro ko 484.
\frac{484x^{2}}{225}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}