Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x\right)^{2}-y^{2}-\left(2x-y\right)^{2}
Whakaarohia te \left(2x+y\right)\left(2x-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-\left(2x-y\right)^{2}
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-y^{2}-\left(2x-y\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-y^{2}-\left(4x^{2}-4xy+y^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-y\right)^{2}.
4x^{2}-y^{2}-4x^{2}+4xy-y^{2}
Hei kimi i te tauaro o 4x^{2}-4xy+y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}+4xy-y^{2}
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-2y^{2}+4xy
Pahekotia te -y^{2} me -y^{2}, ka -2y^{2}.
\left(2x\right)^{2}-y^{2}-\left(2x-y\right)^{2}
Whakaarohia te \left(2x+y\right)\left(2x-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-\left(2x-y\right)^{2}
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-y^{2}-\left(2x-y\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-y^{2}-\left(4x^{2}-4xy+y^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-y\right)^{2}.
4x^{2}-y^{2}-4x^{2}+4xy-y^{2}
Hei kimi i te tauaro o 4x^{2}-4xy+y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}+4xy-y^{2}
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-2y^{2}+4xy
Pahekotia te -y^{2} me -y^{2}, ka -2y^{2}.