Whakaoti mō x
x=\left(\frac{3}{50}+\frac{2}{25}i\right)y+\left(\frac{2}{5}-\frac{4}{5}i\right)
Whakaoti mō y
y=\left(6-8i\right)x+\left(4+8i\right)
Tohaina
Kua tāruatia ki te papatopenga
\left(8+6i\right)x+\left(-3+4i\right)=5+yi
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+i ki te 4+3i.
\left(8+6i\right)x=5+yi-\left(-3+4i\right)
Tangohia te -3+4i mai i ngā taha e rua.
\left(8+6i\right)x=5+yi+\left(3-4i\right)
Whakareatia te -1 ki te -3+4i, ka 3-4i.
\left(8+6i\right)x=yi+8-4i
Mahia ngā tāpiri i roto o 5+\left(3-4i\right).
\left(8+6i\right)x=iy+\left(8-4i\right)
He hanga arowhānui tō te whārite.
\frac{\left(8+6i\right)x}{8+6i}=\frac{iy+\left(8-4i\right)}{8+6i}
Whakawehea ngā taha e rua ki te 8+6i.
x=\frac{iy+\left(8-4i\right)}{8+6i}
Mā te whakawehe ki te 8+6i ka wetekia te whakareanga ki te 8+6i.
x=\left(\frac{3}{50}+\frac{2}{25}i\right)y+\left(\frac{2}{5}-\frac{4}{5}i\right)
Whakawehe iy+\left(8-4i\right) ki te 8+6i.
\left(8+6i\right)x+\left(-3+4i\right)=5+yi
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+i ki te 4+3i.
5+yi=\left(8+6i\right)x+\left(-3+4i\right)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
yi=\left(8+6i\right)x+\left(-3+4i\right)-5
Tangohia te 5 mai i ngā taha e rua.
yi=\left(8+6i\right)x-8+4i
Mahia ngā tāpiri i roto o -3+4i-5.
iy=\left(8+6i\right)x+\left(-8+4i\right)
He hanga arowhānui tō te whārite.
\frac{iy}{i}=\frac{\left(8+6i\right)x+\left(-8+4i\right)}{i}
Whakawehea ngā taha e rua ki te i.
y=\frac{\left(8+6i\right)x+\left(-8+4i\right)}{i}
Mā te whakawehe ki te i ka wetekia te whakareanga ki te i.
y=\left(6-8i\right)x+\left(4+8i\right)
Whakawehe \left(8+6i\right)x+\left(-8+4i\right) ki te i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}