Whakaoti mō x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+20x+25=\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+5\right)^{2}.
4x^{2}+20x+25=x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
4x^{2}+20x+25-x^{2}=4x+4
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+20x+25=4x+4
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+20x+25-4x=4
Tangohia te 4x mai i ngā taha e rua.
3x^{2}+16x+25=4
Pahekotia te 20x me -4x, ka 16x.
3x^{2}+16x+25-4=0
Tangohia te 4 mai i ngā taha e rua.
3x^{2}+16x+21=0
Tangohia te 4 i te 25, ka 21.
a+b=16 ab=3\times 21=63
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,63 3,21 7,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 63.
1+63=64 3+21=24 7+9=16
Tātaihia te tapeke mō ia takirua.
a=7 b=9
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3x^{2}+7x\right)+\left(9x+21\right)
Tuhia anō te 3x^{2}+16x+21 hei \left(3x^{2}+7x\right)+\left(9x+21\right).
x\left(3x+7\right)+3\left(3x+7\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x+7\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 3x+7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{7}{3} x=-3
Hei kimi otinga whārite, me whakaoti te 3x+7=0 me te x+3=0.
4x^{2}+20x+25=\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+5\right)^{2}.
4x^{2}+20x+25=x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
4x^{2}+20x+25-x^{2}=4x+4
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+20x+25=4x+4
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+20x+25-4x=4
Tangohia te 4x mai i ngā taha e rua.
3x^{2}+16x+25=4
Pahekotia te 20x me -4x, ka 16x.
3x^{2}+16x+25-4=0
Tangohia te 4 mai i ngā taha e rua.
3x^{2}+16x+21=0
Tangohia te 4 i te 25, ka 21.
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 16 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
Pūrua 16.
x=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-16±\sqrt{256-252}}{2\times 3}
Whakareatia -12 ki te 21.
x=\frac{-16±\sqrt{4}}{2\times 3}
Tāpiri 256 ki te -252.
x=\frac{-16±2}{2\times 3}
Tuhia te pūtakerua o te 4.
x=\frac{-16±2}{6}
Whakareatia 2 ki te 3.
x=-\frac{14}{6}
Nā, me whakaoti te whārite x=\frac{-16±2}{6} ina he tāpiri te ±. Tāpiri -16 ki te 2.
x=-\frac{7}{3}
Whakahekea te hautanga \frac{-14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{-16±2}{6} ina he tango te ±. Tango 2 mai i -16.
x=-3
Whakawehe -18 ki te 6.
x=-\frac{7}{3} x=-3
Kua oti te whārite te whakatau.
4x^{2}+20x+25=\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+5\right)^{2}.
4x^{2}+20x+25=x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
4x^{2}+20x+25-x^{2}=4x+4
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+20x+25=4x+4
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+20x+25-4x=4
Tangohia te 4x mai i ngā taha e rua.
3x^{2}+16x+25=4
Pahekotia te 20x me -4x, ka 16x.
3x^{2}+16x=4-25
Tangohia te 25 mai i ngā taha e rua.
3x^{2}+16x=-21
Tangohia te 25 i te 4, ka -21.
\frac{3x^{2}+16x}{3}=-\frac{21}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{16}{3}x=-\frac{21}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{16}{3}x=-7
Whakawehe -21 ki te 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=-7+\left(\frac{8}{3}\right)^{2}
Whakawehea te \frac{16}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{3}. Nā, tāpiria te pūrua o te \frac{8}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-7+\frac{64}{9}
Pūruatia \frac{8}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{1}{9}
Tāpiri -7 ki te \frac{64}{9}.
\left(x+\frac{8}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}+\frac{16}{3}x+\frac{64}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{8}{3}=\frac{1}{3} x+\frac{8}{3}=-\frac{1}{3}
Whakarūnātia.
x=-\frac{7}{3} x=-3
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}