Whakaoti mō x
x = \frac{\sqrt{1085}}{15} \approx 2.195955879
x = -\frac{\sqrt{1085}}{15} \approx -2.195955879
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-2\right)^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
Hei kimi i te tauaro o 9x^{2}-12x+4, kimihia te tauaro o ia taurangi.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
Pahekotia te -9x^{2} me -40x^{2}, ka -49x^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
Me tāpiri te 205 ki ngā taha e rua.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
Tāpirihia te -4 ki te 205, ka 201.
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te 7-3x.
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -35x+15x^{2} ki te 7+3x ka whakakotahi i ngā kupu rite.
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
Pahekotia te 16x me -245x, ka -229x.
-45x^{2}-229x+16+45x^{3}+12x+201=0
Pahekotia te 4x^{2} me -49x^{2}, ka -45x^{2}.
-45x^{2}-217x+16+45x^{3}+201=0
Pahekotia te -229x me 12x, ka -217x.
-45x^{2}-217x+217+45x^{3}=0
Tāpirihia te 16 ki te 201, ka 217.
45x^{3}-45x^{2}-217x+217=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 217, ā, ka wehea e q te whakarea arahanga 45. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
45x^{2}-217=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 45x^{3}-45x^{2}-217x+217 ki te x-1, kia riro ko 45x^{2}-217. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 45 mō te a, te 0 mō te b, me te -217 mō te c i te ture pūrua.
x=\frac{0±6\sqrt{1085}}{90}
Mahia ngā tātaitai.
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
Whakaotia te whārite 45x^{2}-217=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}