Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
3x^{2}+16x+16+10x-25=26x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+26x+16-25=26x
Pahekotia te 16x me 10x, ka 26x.
3x^{2}+26x-9=26x
Tangohia te 25 i te 16, ka -9.
3x^{2}+26x-9-26x=0
Tangohia te 26x mai i ngā taha e rua.
3x^{2}-9=0
Pahekotia te 26x me -26x, ka 0.
3x^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=3
Whakawehea te 9 ki te 3, kia riro ko 3.
x=\sqrt{3} x=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
3x^{2}+16x+16+10x-25=26x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+26x+16-25=26x
Pahekotia te 16x me 10x, ka 26x.
3x^{2}+26x-9=26x
Tangohia te 25 i te 16, ka -9.
3x^{2}+26x-9-26x=0
Tangohia te 26x mai i ngā taha e rua.
3x^{2}-9=0
Pahekotia te 26x me -26x, ka 0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{108}}{2\times 3}
Whakareatia -12 ki te -9.
x=\frac{0±6\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 108.
x=\frac{0±6\sqrt{3}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{3}}{6} ina he tāpiri te ±.
x=-\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{3}}{6} ina he tango te ±.
x=\sqrt{3} x=-\sqrt{3}
Kua oti te whārite te whakatau.