Whakaoti mō x
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
3x^{2}+16x+16+10x-25=26x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+26x+16-25=26x
Pahekotia te 16x me 10x, ka 26x.
3x^{2}+26x-9=26x
Tangohia te 25 i te 16, ka -9.
3x^{2}+26x-9-26x=0
Tangohia te 26x mai i ngā taha e rua.
3x^{2}-9=0
Pahekotia te 26x me -26x, ka 0.
3x^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=3
Whakawehea te 9 ki te 3, kia riro ko 3.
x=\sqrt{3} x=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
Hei kimi i te tauaro o x^{2}-10x+25, kimihia te tauaro o ia taurangi.
3x^{2}+16x+16+10x-25=26x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+26x+16-25=26x
Pahekotia te 16x me 10x, ka 26x.
3x^{2}+26x-9=26x
Tangohia te 25 i te 16, ka -9.
3x^{2}+26x-9-26x=0
Tangohia te 26x mai i ngā taha e rua.
3x^{2}-9=0
Pahekotia te 26x me -26x, ka 0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{108}}{2\times 3}
Whakareatia -12 ki te -9.
x=\frac{0±6\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 108.
x=\frac{0±6\sqrt{3}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{3}}{6} ina he tāpiri te ±.
x=-\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{3}}{6} ina he tango te ±.
x=\sqrt{3} x=-\sqrt{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}