Whakaoti mō x
x=\sqrt{7}+1\approx 3.645751311
x=1-\sqrt{7}\approx -1.645751311
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-x-6-x\left(x+1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+3 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-x-6-\left(x^{2}+x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
2x^{2}-x-6-x^{2}-x=0
Hei kimi i te tauaro o x^{2}+x, kimihia te tauaro o ia taurangi.
x^{2}-x-6-x=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-2x-6=0
Pahekotia te -x me -x, ka -2x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-6\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-\left(-2\right)±\sqrt{28}}{2}
Tāpiri 4 ki te 24.
x=\frac{-\left(-2\right)±2\sqrt{7}}{2}
Tuhia te pūtakerua o te 28.
x=\frac{2±2\sqrt{7}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2\sqrt{7}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{7}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{7}.
x=\sqrt{7}+1
Whakawehe 2+2\sqrt{7} ki te 2.
x=\frac{2-2\sqrt{7}}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{7}}{2} ina he tango te ±. Tango 2\sqrt{7} mai i 2.
x=1-\sqrt{7}
Whakawehe 2-2\sqrt{7} ki te 2.
x=\sqrt{7}+1 x=1-\sqrt{7}
Kua oti te whārite te whakatau.
2x^{2}-x-6-x\left(x+1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+3 ki te x-2 ka whakakotahi i ngā kupu rite.
2x^{2}-x-6-\left(x^{2}+x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
2x^{2}-x-6-x^{2}-x=0
Hei kimi i te tauaro o x^{2}+x, kimihia te tauaro o ia taurangi.
x^{2}-x-6-x=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-2x-6=0
Pahekotia te -x me -x, ka -2x.
x^{2}-2x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-2x+1=6+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=7
Tāpiri 6 ki te 1.
\left(x-1\right)^{2}=7
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{7} x-1=-\sqrt{7}
Whakarūnātia.
x=\sqrt{7}+1 x=1-\sqrt{7}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}