Whakaoti mō x
x=-7
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+40 ka whakakotahi i ngā kupu rite.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te -32x me 36x, ka 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Tangohia te 160 i te -48, ka -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-8 ki te x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Tangohia te 2x^{3} mai i ngā taha e rua.
4x+4x^{2}-208=-32x-8x^{2}+128
Pahekotia te 2x^{3} me -2x^{3}, ka 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Me tāpiri te 32x ki ngā taha e rua.
36x+4x^{2}-208=-8x^{2}+128
Pahekotia te 4x me 32x, ka 36x.
36x+4x^{2}-208+8x^{2}=128
Me tāpiri te 8x^{2} ki ngā taha e rua.
36x+12x^{2}-208=128
Pahekotia te 4x^{2} me 8x^{2}, ka 12x^{2}.
36x+12x^{2}-208-128=0
Tangohia te 128 mai i ngā taha e rua.
36x+12x^{2}-336=0
Tangohia te 128 i te -208, ka -336.
3x+x^{2}-28=0
Whakawehea ngā taha e rua ki te 12.
x^{2}+3x-28=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=1\left(-28\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Tuhia anō te x^{2}+3x-28 hei \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-4\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-7
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+7=0.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+40 ka whakakotahi i ngā kupu rite.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te -32x me 36x, ka 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Tangohia te 160 i te -48, ka -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-8 ki te x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Tangohia te 2x^{3} mai i ngā taha e rua.
4x+4x^{2}-208=-32x-8x^{2}+128
Pahekotia te 2x^{3} me -2x^{3}, ka 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Me tāpiri te 32x ki ngā taha e rua.
36x+4x^{2}-208=-8x^{2}+128
Pahekotia te 4x me 32x, ka 36x.
36x+4x^{2}-208+8x^{2}=128
Me tāpiri te 8x^{2} ki ngā taha e rua.
36x+12x^{2}-208=128
Pahekotia te 4x^{2} me 8x^{2}, ka 12x^{2}.
36x+12x^{2}-208-128=0
Tangohia te 128 mai i ngā taha e rua.
36x+12x^{2}-336=0
Tangohia te 128 i te -208, ka -336.
12x^{2}+36x-336=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-336\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 36 mō b, me -336 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 12\left(-336\right)}}{2\times 12}
Pūrua 36.
x=\frac{-36±\sqrt{1296-48\left(-336\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-36±\sqrt{1296+16128}}{2\times 12}
Whakareatia -48 ki te -336.
x=\frac{-36±\sqrt{17424}}{2\times 12}
Tāpiri 1296 ki te 16128.
x=\frac{-36±132}{2\times 12}
Tuhia te pūtakerua o te 17424.
x=\frac{-36±132}{24}
Whakareatia 2 ki te 12.
x=\frac{96}{24}
Nā, me whakaoti te whārite x=\frac{-36±132}{24} ina he tāpiri te ±. Tāpiri -36 ki te 132.
x=4
Whakawehe 96 ki te 24.
x=-\frac{168}{24}
Nā, me whakaoti te whārite x=\frac{-36±132}{24} ina he tango te ±. Tango 132 mai i -36.
x=-7
Whakawehe -168 ki te 24.
x=4 x=-7
Kua oti te whārite te whakatau.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+40 ka whakakotahi i ngā kupu rite.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Pahekotia te -32x me 36x, ka 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Tangohia te 160 i te -48, ka -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-8 ki te x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Tangohia te 2x^{3} mai i ngā taha e rua.
4x+4x^{2}-208=-32x-8x^{2}+128
Pahekotia te 2x^{3} me -2x^{3}, ka 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Me tāpiri te 32x ki ngā taha e rua.
36x+4x^{2}-208=-8x^{2}+128
Pahekotia te 4x me 32x, ka 36x.
36x+4x^{2}-208+8x^{2}=128
Me tāpiri te 8x^{2} ki ngā taha e rua.
36x+12x^{2}-208=128
Pahekotia te 4x^{2} me 8x^{2}, ka 12x^{2}.
36x+12x^{2}=128+208
Me tāpiri te 208 ki ngā taha e rua.
36x+12x^{2}=336
Tāpirihia te 128 ki te 208, ka 336.
12x^{2}+36x=336
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{12x^{2}+36x}{12}=\frac{336}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{36}{12}x=\frac{336}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+3x=\frac{336}{12}
Whakawehe 36 ki te 12.
x^{2}+3x=28
Whakawehe 336 ki te 12.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Tāpiri 28 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Whakarūnātia.
x=4 x=-7
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}