Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x\right)^{2}-9=\left(4x-1\right)\left(x+1\right)
Whakaarohia te \left(2x+3\right)\left(2x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2^{2}x^{2}-9=\left(4x-1\right)\left(x+1\right)
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-9=\left(4x-1\right)\left(x+1\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-9=4x^{2}+3x-1
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-1 ki te x+1 ka whakakotahi i ngā kupu rite.
4x^{2}-9-4x^{2}=3x-1
Tangohia te 4x^{2} mai i ngā taha e rua.
-9=3x-1
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
3x-1=-9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x=-9+1
Me tāpiri te 1 ki ngā taha e rua.
3x=-8
Tāpirihia te -9 ki te 1, ka -8.
x=\frac{-8}{3}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{8}{3}
Ka taea te hautanga \frac{-8}{3} te tuhi anō ko -\frac{8}{3} mā te tango i te tohu tōraro.