Whakaoti mō x
x\geq -\frac{1}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x+1-4\left(x+1\right)^{2}\leq -2
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1-4\left(x^{2}+2x+1\right)\leq -2
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}+4x+1-4x^{2}-8x-4\leq -2
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x^{2}+2x+1.
4x+1-8x-4\leq -2
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-4x+1-4\leq -2
Pahekotia te 4x me -8x, ka -4x.
-4x-3\leq -2
Tangohia te 4 i te 1, ka -3.
-4x\leq -2+3
Me tāpiri te 3 ki ngā taha e rua.
-4x\leq 1
Tāpirihia te -2 ki te 3, ka 1.
x\geq -\frac{1}{4}
Whakawehea ngā taha e rua ki te -4. I te mea he tōraro a -4, ka huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}