Whakaoti mō x
x=\frac{\sqrt{57}-5}{8}\approx 0.318729304
x=\frac{-\sqrt{57}-5}{8}\approx -1.568729304
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x+1=3-x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1-3=-x
Tangohia te 3 mai i ngā taha e rua.
4x^{2}+4x-2=-x
Tangohia te 3 i te 1, ka -2.
4x^{2}+4x-2+x=0
Me tāpiri te x ki ngā taha e rua.
4x^{2}+5x-2=0
Pahekotia te 4x me x, ka 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-2\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 5 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-2\right)}}{2\times 4}
Pūrua 5.
x=\frac{-5±\sqrt{25-16\left(-2\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-5±\sqrt{25+32}}{2\times 4}
Whakareatia -16 ki te -2.
x=\frac{-5±\sqrt{57}}{2\times 4}
Tāpiri 25 ki te 32.
x=\frac{-5±\sqrt{57}}{8}
Whakareatia 2 ki te 4.
x=\frac{\sqrt{57}-5}{8}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{57}}{8} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{57}.
x=\frac{-\sqrt{57}-5}{8}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{57}}{8} ina he tango te ±. Tango \sqrt{57} mai i -5.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
Kua oti te whārite te whakatau.
4x^{2}+4x+1=3-x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x=3
Me tāpiri te x ki ngā taha e rua.
4x^{2}+5x+1=3
Pahekotia te 4x me x, ka 5x.
4x^{2}+5x=3-1
Tangohia te 1 mai i ngā taha e rua.
4x^{2}+5x=2
Tangohia te 1 i te 3, ka 2.
\frac{4x^{2}+5x}{4}=\frac{2}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{5}{4}x=\frac{2}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{5}{4}x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{1}{2}+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1}{2}+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{57}{64}
Tāpiri \frac{1}{2} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{8}\right)^{2}=\frac{57}{64}
Tauwehea x^{2}+\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{57}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{8}=\frac{\sqrt{57}}{8} x+\frac{5}{8}=-\frac{\sqrt{57}}{8}
Whakarūnātia.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}