Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1=1+x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4x^{2}+4x+1=x^{2}
Tangohia te 1 i te 1, ka 0.
4x^{2}+4x+1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+4x+1=0
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
a+b=4 ab=3\times 1=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(3x^{2}+x\right)+\left(3x+1\right)
Tuhia anō te 3x^{2}+4x+1 hei \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Whakatauwehea atu x i te 3x^{2}+x.
\left(3x+1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-1
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te x+1=0.
4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1=1+x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4x^{2}+4x+1=x^{2}
Tangohia te 1 i te 1, ka 0.
4x^{2}+4x+1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+4x+1=0
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Pūrua 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Tāpiri 16 ki te -12.
x=\frac{-4±2}{2\times 3}
Tuhia te pūtakerua o te 4.
x=\frac{-4±2}{6}
Whakareatia 2 ki te 3.
x=-\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{-4±2}{6} ina he tāpiri te ±. Tāpiri -4 ki te 2.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{-4±2}{6} ina he tango te ±. Tango 2 mai i -4.
x=-1
Whakawehe -6 ki te 6.
x=-\frac{1}{3} x=-1
Kua oti te whārite te whakatau.
4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1=1+x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4x^{2}+4x+1=x^{2}
Tangohia te 1 i te 1, ka 0.
4x^{2}+4x+1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+4x+1=0
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+4x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
Whakawehea te \frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{3}. Nā, tāpiria te pūrua o te \frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Tāpiri -\frac{1}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}+\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Whakarūnātia.
x=-\frac{1}{3} x=-1
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.