Whakaoti mō x
x=-\frac{1}{5}=-0.2
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x+1+\left(x+2\right)\left(x+1\right)=x+2
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+3x+2=x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
5x^{2}+4x+1+3x+2=x+2
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+7x+1+2=x+2
Pahekotia te 4x me 3x, ka 7x.
5x^{2}+7x+3=x+2
Tāpirihia te 1 ki te 2, ka 3.
5x^{2}+7x+3-x=2
Tangohia te x mai i ngā taha e rua.
5x^{2}+6x+3=2
Pahekotia te 7x me -x, ka 6x.
5x^{2}+6x+3-2=0
Tangohia te 2 mai i ngā taha e rua.
5x^{2}+6x+1=0
Tangohia te 2 i te 3, ka 1.
a+b=6 ab=5\times 1=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(5x^{2}+x\right)+\left(5x+1\right)
Tuhia anō te 5x^{2}+6x+1 hei \left(5x^{2}+x\right)+\left(5x+1\right).
x\left(5x+1\right)+5x+1
Whakatauwehea atu x i te 5x^{2}+x.
\left(5x+1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 5x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{5} x=-1
Hei kimi otinga whārite, me whakaoti te 5x+1=0 me te x+1=0.
4x^{2}+4x+1+\left(x+2\right)\left(x+1\right)=x+2
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+3x+2=x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
5x^{2}+4x+1+3x+2=x+2
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+7x+1+2=x+2
Pahekotia te 4x me 3x, ka 7x.
5x^{2}+7x+3=x+2
Tāpirihia te 1 ki te 2, ka 3.
5x^{2}+7x+3-x=2
Tangohia te x mai i ngā taha e rua.
5x^{2}+6x+3=2
Pahekotia te 7x me -x, ka 6x.
5x^{2}+6x+3-2=0
Tangohia te 2 mai i ngā taha e rua.
5x^{2}+6x+1=0
Tangohia te 2 i te 3, ka 1.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 6 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5}}{2\times 5}
Pūrua 6.
x=\frac{-6±\sqrt{36-20}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-6±\sqrt{16}}{2\times 5}
Tāpiri 36 ki te -20.
x=\frac{-6±4}{2\times 5}
Tuhia te pūtakerua o te 16.
x=\frac{-6±4}{10}
Whakareatia 2 ki te 5.
x=-\frac{2}{10}
Nā, me whakaoti te whārite x=\frac{-6±4}{10} ina he tāpiri te ±. Tāpiri -6 ki te 4.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{-6±4}{10} ina he tango te ±. Tango 4 mai i -6.
x=-1
Whakawehe -10 ki te 10.
x=-\frac{1}{5} x=-1
Kua oti te whārite te whakatau.
4x^{2}+4x+1+\left(x+2\right)\left(x+1\right)=x+2
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+3x+2=x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
5x^{2}+4x+1+3x+2=x+2
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+7x+1+2=x+2
Pahekotia te 4x me 3x, ka 7x.
5x^{2}+7x+3=x+2
Tāpirihia te 1 ki te 2, ka 3.
5x^{2}+7x+3-x=2
Tangohia te x mai i ngā taha e rua.
5x^{2}+6x+3=2
Pahekotia te 7x me -x, ka 6x.
5x^{2}+6x=2-3
Tangohia te 3 mai i ngā taha e rua.
5x^{2}+6x=-1
Tangohia te 3 i te 2, ka -1.
\frac{5x^{2}+6x}{5}=-\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{6}{5}x=-\frac{1}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-\frac{1}{5}+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{1}{5}+\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{4}{25}
Tāpiri -\frac{1}{5} ki te \frac{9}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{5}\right)^{2}=\frac{4}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{2}{5} x+\frac{3}{5}=-\frac{2}{5}
Whakarūnātia.
x=-\frac{1}{5} x=-1
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}