Whakaoti mō x
x=-3
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}+2-47=0
Tangohia te 47 mai i ngā taha e rua.
5x^{2}-45=0
Tangohia te 47 i te 2, ka -45.
x^{2}-9=0
Whakawehea ngā taha e rua ki te 5.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te x^{2}-9. Tuhia anō te x^{2}-9 hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}=47-2
Tangohia te 2 mai i ngā taha e rua.
5x^{2}=45
Tangohia te 2 i te 47, ka 45.
x^{2}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=9
Whakawehea te 45 ki te 5, kia riro ko 9.
x=3 x=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}+2-47=0
Tangohia te 47 mai i ngā taha e rua.
5x^{2}-45=0
Tangohia te 47 i te 2, ka -45.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-45\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-45\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-45\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{900}}{2\times 5}
Whakareatia -20 ki te -45.
x=\frac{0±30}{2\times 5}
Tuhia te pūtakerua o te 900.
x=\frac{0±30}{10}
Whakareatia 2 ki te 5.
x=3
Nā, me whakaoti te whārite x=\frac{0±30}{10} ina he tāpiri te ±. Whakawehe 30 ki te 10.
x=-3
Nā, me whakaoti te whārite x=\frac{0±30}{10} ina he tango te ±. Whakawehe -30 ki te 10.
x=3 x=-3
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}