Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}+2-47=0
Tangohia te 47 mai i ngā taha e rua.
5x^{2}-45=0
Tangohia te 47 i te 2, ka -45.
x^{2}-9=0
Whakawehea ngā taha e rua ki te 5.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te x^{2}-9. Tuhia anō te x^{2}-9 hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}=47-2
Tangohia te 2 mai i ngā taha e rua.
5x^{2}=45
Tangohia te 2 i te 47, ka 45.
x^{2}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=9
Whakawehea te 45 ki te 5, kia riro ko 9.
x=3 x=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}+4x+1+\left(x+1\right)^{2}=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
4x^{2}+4x+1+x^{2}+2x+1=6x+47
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
5x^{2}+4x+1+2x+1=6x+47
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}+6x+1+1=6x+47
Pahekotia te 4x me 2x, ka 6x.
5x^{2}+6x+2=6x+47
Tāpirihia te 1 ki te 1, ka 2.
5x^{2}+6x+2-6x=47
Tangohia te 6x mai i ngā taha e rua.
5x^{2}+2=47
Pahekotia te 6x me -6x, ka 0.
5x^{2}+2-47=0
Tangohia te 47 mai i ngā taha e rua.
5x^{2}-45=0
Tangohia te 47 i te 2, ka -45.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-45\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-45\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-45\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{900}}{2\times 5}
Whakareatia -20 ki te -45.
x=\frac{0±30}{2\times 5}
Tuhia te pūtakerua o te 900.
x=\frac{0±30}{10}
Whakareatia 2 ki te 5.
x=3
Nā, me whakaoti te whārite x=\frac{0±30}{10} ina he tāpiri te ±. Whakawehe 30 ki te 10.
x=-3
Nā, me whakaoti te whārite x=\frac{0±30}{10} ina he tango te ±. Whakawehe -30 ki te 10.
x=3 x=-3
Kua oti te whārite te whakatau.