Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+\frac{1}{3}y ki ia tau o x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakareatia te y ki te y, ka y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Pahekotia te -6xy me \frac{1}{3}yx, ka -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakareatia te \frac{1}{3} ki te -3, ka \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakawehea te -3 ki te 3, kia riro ko -1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+y ki ia tau o \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Whakareatia te x ki te x, ka x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Me whakakore te 2 me te 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Pahekotia te -2xy me y\times \frac{1}{2}x, ka -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Hei kimi i te tauaro o x^{2}-\frac{3}{2}xy-y^{2}, kimihia te tauaro o ia taurangi.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
Ko te tauaro o -\frac{3}{2}xy ko \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
Ko te tauaro o -y^{2} ko y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Pahekotia te -\frac{17}{3}xy me \frac{3}{2}xy, ka -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Pahekotia te -y^{2} me y^{2}, ka 0.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+\frac{1}{3}y ki ia tau o x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakareatia te y ki te y, ka y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Pahekotia te -6xy me \frac{1}{3}yx, ka -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakareatia te \frac{1}{3} ki te -3, ka \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Whakawehea te -3 ki te 3, kia riro ko -1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+y ki ia tau o \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Whakareatia te x ki te x, ka x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Me whakakore te 2 me te 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Pahekotia te -2xy me y\times \frac{1}{2}x, ka -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Hei kimi i te tauaro o x^{2}-\frac{3}{2}xy-y^{2}, kimihia te tauaro o ia taurangi.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
Ko te tauaro o -\frac{3}{2}xy ko \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
Ko te tauaro o -y^{2} ko y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Pahekotia te -\frac{17}{3}xy me \frac{3}{2}xy, ka -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Pahekotia te -y^{2} me y^{2}, ka 0.