Whakaoti mō t
t=0
t = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
4t^{2}+12t+9=3\left(2t+3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2t+3\right)^{2}.
4t^{2}+12t+9=6t+9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2t+3.
4t^{2}+12t+9-6t=9
Tangohia te 6t mai i ngā taha e rua.
4t^{2}+6t+9=9
Pahekotia te 12t me -6t, ka 6t.
4t^{2}+6t+9-9=0
Tangohia te 9 mai i ngā taha e rua.
4t^{2}+6t=0
Tangohia te 9 i te 9, ka 0.
t\left(4t+6\right)=0
Tauwehea te t.
t=0 t=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te t=0 me te 4t+6=0.
4t^{2}+12t+9=3\left(2t+3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2t+3\right)^{2}.
4t^{2}+12t+9=6t+9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2t+3.
4t^{2}+12t+9-6t=9
Tangohia te 6t mai i ngā taha e rua.
4t^{2}+6t+9=9
Pahekotia te 12t me -6t, ka 6t.
4t^{2}+6t+9-9=0
Tangohia te 9 mai i ngā taha e rua.
4t^{2}+6t=0
Tangohia te 9 i te 9, ka 0.
t=\frac{-6±\sqrt{6^{2}}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±6}{2\times 4}
Tuhia te pūtakerua o te 6^{2}.
t=\frac{-6±6}{8}
Whakareatia 2 ki te 4.
t=\frac{0}{8}
Nā, me whakaoti te whārite t=\frac{-6±6}{8} ina he tāpiri te ±. Tāpiri -6 ki te 6.
t=0
Whakawehe 0 ki te 8.
t=-\frac{12}{8}
Nā, me whakaoti te whārite t=\frac{-6±6}{8} ina he tango te ±. Tango 6 mai i -6.
t=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
t=0 t=-\frac{3}{2}
Kua oti te whārite te whakatau.
4t^{2}+12t+9=3\left(2t+3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2t+3\right)^{2}.
4t^{2}+12t+9=6t+9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2t+3.
4t^{2}+12t+9-6t=9
Tangohia te 6t mai i ngā taha e rua.
4t^{2}+6t+9=9
Pahekotia te 12t me -6t, ka 6t.
4t^{2}+6t=9-9
Tangohia te 9 mai i ngā taha e rua.
4t^{2}+6t=0
Tangohia te 9 i te 9, ka 0.
\frac{4t^{2}+6t}{4}=\frac{0}{4}
Whakawehea ngā taha e rua ki te 4.
t^{2}+\frac{6}{4}t=\frac{0}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
t^{2}+\frac{3}{2}t=\frac{0}{4}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t^{2}+\frac{3}{2}t=0
Whakawehe 0 ki te 4.
t^{2}+\frac{3}{2}t+\left(\frac{3}{4}\right)^{2}=\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{3}{2}t+\frac{9}{16}=\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t+\frac{3}{4}\right)^{2}=\frac{9}{16}
Tauwehea t^{2}+\frac{3}{2}t+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{3}{4}=\frac{3}{4} t+\frac{3}{4}=-\frac{3}{4}
Whakarūnātia.
t=0 t=-\frac{3}{2}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}