Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4t^{2}+4t+1-\left(2t+1\right)\left(2t-1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2t+1\right)^{2}.
4t^{2}+4t+1-\left(\left(2t\right)^{2}-1\right)
Whakaarohia te \left(2t+1\right)\left(2t-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4t^{2}+4t+1-\left(2^{2}t^{2}-1\right)
Whakarohaina te \left(2t\right)^{2}.
4t^{2}+4t+1-\left(4t^{2}-1\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4t^{2}+4t+1-4t^{2}+1
Hei kimi i te tauaro o 4t^{2}-1, kimihia te tauaro o ia taurangi.
4t+1+1
Pahekotia te 4t^{2} me -4t^{2}, ka 0.
4t+2
Tāpirihia te 1 ki te 1, ka 2.
4t^{2}+4t+1-\left(2t+1\right)\left(2t-1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2t+1\right)^{2}.
4t^{2}+4t+1-\left(\left(2t\right)^{2}-1\right)
Whakaarohia te \left(2t+1\right)\left(2t-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4t^{2}+4t+1-\left(2^{2}t^{2}-1\right)
Whakarohaina te \left(2t\right)^{2}.
4t^{2}+4t+1-\left(4t^{2}-1\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4t^{2}+4t+1-4t^{2}+1
Hei kimi i te tauaro o 4t^{2}-1, kimihia te tauaro o ia taurangi.
4t+1+1
Pahekotia te 4t^{2} me -4t^{2}, ka 0.
4t+2
Tāpirihia te 1 ki te 1, ka 2.