Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2n+2\right)\left(2n+1\right)-\frac{2\left(n+1\right)\left(2n+1\right)}{n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(2n+2\right)\left(2n+1\right)}{n+1}.
\left(2n+2\right)\left(2n+1\right)-2\left(2n+1\right)
Me whakakore tahi te n+1 i te taurunga me te tauraro.
\left(2n+2\right)\left(2n+1\right)-\left(4n+2\right)
Me whakaroha te kīanga.
\left(2n+2\right)\left(2n+1\right)-4n-2
Hei kimi i te tauaro o 4n+2, kimihia te tauaro o ia taurangi.
4n^{2}+2n+4n+2-4n-2
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2n+2 ki ia tau o 2n+1.
4n^{2}+6n+2-4n-2
Pahekotia te 2n me 4n, ka 6n.
4n^{2}+2n+2-2
Pahekotia te 6n me -4n, ka 2n.
4n^{2}+2n
Tangohia te 2 i te 2, ka 0.
\left(2n+2\right)\left(2n+1\right)-\frac{2\left(n+1\right)\left(2n+1\right)}{n+1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(2n+2\right)\left(2n+1\right)}{n+1}.
\left(2n+2\right)\left(2n+1\right)-2\left(2n+1\right)
Me whakakore tahi te n+1 i te taurunga me te tauraro.
\left(2n+2\right)\left(2n+1\right)-\left(4n+2\right)
Me whakaroha te kīanga.
\left(2n+2\right)\left(2n+1\right)-4n-2
Hei kimi i te tauaro o 4n+2, kimihia te tauaro o ia taurangi.
4n^{2}+2n+4n+2-4n-2
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2n+2 ki ia tau o 2n+1.
4n^{2}+6n+2-4n-2
Pahekotia te 2n me 4n, ka 6n.
4n^{2}+2n+2-2
Pahekotia te 6n me -4n, ka 2n.
4n^{2}+2n
Tangohia te 2 i te 2, ka 0.