Whakaoti mō k
k=\sqrt{2}-\frac{3}{2}\approx -0.085786438
k=-\sqrt{2}-\frac{3}{2}\approx -2.914213562
Tohaina
Kua tāruatia ki te papatopenga
2k+3=2\sqrt{2} 2k+3=-2\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2k+3-3=2\sqrt{2}-3 2k+3-3=-2\sqrt{2}-3
Me tango 3 mai i ngā taha e rua o te whārite.
2k=2\sqrt{2}-3 2k=-2\sqrt{2}-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
2k=2\sqrt{2}-3
Tango 3 mai i 2\sqrt{2}.
2k=-2\sqrt{2}-3
Tango 3 mai i -2\sqrt{2}.
\frac{2k}{2}=\frac{2\sqrt{2}-3}{2} \frac{2k}{2}=\frac{-2\sqrt{2}-3}{2}
Whakawehea ngā taha e rua ki te 2.
k=\frac{2\sqrt{2}-3}{2} k=\frac{-2\sqrt{2}-3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
k=\sqrt{2}-\frac{3}{2}
Whakawehe 2\sqrt{2}-3 ki te 2.
k=-\sqrt{2}-\frac{3}{2}
Whakawehe -2\sqrt{2}-3 ki te 2.
k=\sqrt{2}-\frac{3}{2} k=-\sqrt{2}-\frac{3}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}