Whakaoti mō a
a=\left(-\frac{4}{13}-\frac{7}{13}i\right)b+\left(\frac{11}{13}+\frac{42}{13}i\right)
Whakaoti mō b
b=\left(-\frac{4}{5}+\frac{7}{5}i\right)a+\left(\frac{26}{5}+\frac{7}{5}i\right)
Tohaina
Kua tāruatia ki te papatopenga
2a-b+3ia+2ib=-8+9i
Whakamahia te āhuatanga tohatoha hei whakarea te 3a+2b ki te i.
\left(2+3i\right)a-b+2ib=-8+9i
Pahekotia te 2a me 3ia, ka \left(2+3i\right)a.
\left(2+3i\right)a+\left(-1+2i\right)b=-8+9i
Pahekotia te -b me 2ib, ka \left(-1+2i\right)b.
\left(2+3i\right)a=-8+9i-\left(-1+2i\right)b
Tangohia te \left(-1+2i\right)b mai i ngā taha e rua.
\left(2+3i\right)a=-8+9i+\left(1-2i\right)b
Whakareatia te -1 ki te -1+2i, ka 1-2i.
\left(2+3i\right)a=\left(1-2i\right)b+\left(-8+9i\right)
He hanga arowhānui tō te whārite.
\frac{\left(2+3i\right)a}{2+3i}=\frac{\left(1-2i\right)b+\left(-8+9i\right)}{2+3i}
Whakawehea ngā taha e rua ki te 2+3i.
a=\frac{\left(1-2i\right)b+\left(-8+9i\right)}{2+3i}
Mā te whakawehe ki te 2+3i ka wetekia te whakareanga ki te 2+3i.
a=\left(-\frac{4}{13}-\frac{7}{13}i\right)b+\left(\frac{11}{13}+\frac{42}{13}i\right)
Whakawehe -8+9i+\left(1-2i\right)b ki te 2+3i.
2a-b+3ia+2ib=-8+9i
Whakamahia te āhuatanga tohatoha hei whakarea te 3a+2b ki te i.
\left(2+3i\right)a-b+2ib=-8+9i
Pahekotia te 2a me 3ia, ka \left(2+3i\right)a.
\left(2+3i\right)a+\left(-1+2i\right)b=-8+9i
Pahekotia te -b me 2ib, ka \left(-1+2i\right)b.
\left(-1+2i\right)b=-8+9i-\left(2+3i\right)a
Tangohia te \left(2+3i\right)a mai i ngā taha e rua.
\left(-1+2i\right)b=-8+9i+\left(-2-3i\right)a
Whakareatia te -1 ki te 2+3i, ka -2-3i.
\left(-1+2i\right)b=\left(-2-3i\right)a+\left(-8+9i\right)
He hanga arowhānui tō te whārite.
\frac{\left(-1+2i\right)b}{-1+2i}=\frac{\left(-2-3i\right)a+\left(-8+9i\right)}{-1+2i}
Whakawehea ngā taha e rua ki te -1+2i.
b=\frac{\left(-2-3i\right)a+\left(-8+9i\right)}{-1+2i}
Mā te whakawehe ki te -1+2i ka wetekia te whakareanga ki te -1+2i.
b=\left(-\frac{4}{5}+\frac{7}{5}i\right)a+\left(\frac{26}{5}+\frac{7}{5}i\right)
Whakawehe -8+9i+\left(-2-3i\right)a ki te -1+2i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}