Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakaarohia te \left(2a-5b\right)\left(2a+5b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakarohaina te \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakarohaina te \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Whakaarohia te \left(6b-3a\right)\left(6b+3a\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Whakarohaina te \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Whakarohaina te \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
4a^{2}+11b^{2}-9a^{2}
Pahekotia te -25b^{2} me 36b^{2}, ka 11b^{2}.
-5a^{2}+11b^{2}
Pahekotia te 4a^{2} me -9a^{2}, ka -5a^{2}.
\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakaarohia te \left(2a-5b\right)\left(2a+5b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakarohaina te \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Whakarohaina te \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Whakaarohia te \left(6b-3a\right)\left(6b+3a\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Whakarohaina te \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Whakarohaina te \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
4a^{2}+11b^{2}-9a^{2}
Pahekotia te -25b^{2} me 36b^{2}, ka 11b^{2}.
-5a^{2}+11b^{2}
Pahekotia te 4a^{2} me -9a^{2}, ka -5a^{2}.