Whakaoti mō a
a=-2
a=2
Tohaina
Kua tāruatia ki te papatopenga
2a\left(a+1\right)+\left(a+1\right)\left(-1\right)=a+7
Tē taea kia ōrite te tāupe a ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a+1.
2a^{2}+2a+\left(a+1\right)\left(-1\right)=a+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2a ki te a+1.
2a^{2}+2a-a-1=a+7
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te -1.
2a^{2}+a-1=a+7
Pahekotia te 2a me -a, ka a.
2a^{2}+a-1-a=7
Tangohia te a mai i ngā taha e rua.
2a^{2}-1=7
Pahekotia te a me -a, ka 0.
2a^{2}=7+1
Me tāpiri te 1 ki ngā taha e rua.
2a^{2}=8
Tāpirihia te 7 ki te 1, ka 8.
a^{2}=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
a^{2}=4
Whakawehea te 8 ki te 2, kia riro ko 4.
a=2 a=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2a\left(a+1\right)+\left(a+1\right)\left(-1\right)=a+7
Tē taea kia ōrite te tāupe a ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a+1.
2a^{2}+2a+\left(a+1\right)\left(-1\right)=a+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2a ki te a+1.
2a^{2}+2a-a-1=a+7
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te -1.
2a^{2}+a-1=a+7
Pahekotia te 2a me -a, ka a.
2a^{2}+a-1-a=7
Tangohia te a mai i ngā taha e rua.
2a^{2}-1=7
Pahekotia te a me -a, ka 0.
2a^{2}-1-7=0
Tangohia te 7 mai i ngā taha e rua.
2a^{2}-8=0
Tangohia te 7 i te -1, ka -8.
a=\frac{0±\sqrt{0^{2}-4\times 2\left(-8\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 2\left(-8\right)}}{2\times 2}
Pūrua 0.
a=\frac{0±\sqrt{-8\left(-8\right)}}{2\times 2}
Whakareatia -4 ki te 2.
a=\frac{0±\sqrt{64}}{2\times 2}
Whakareatia -8 ki te -8.
a=\frac{0±8}{2\times 2}
Tuhia te pūtakerua o te 64.
a=\frac{0±8}{4}
Whakareatia 2 ki te 2.
a=2
Nā, me whakaoti te whārite a=\frac{0±8}{4} ina he tāpiri te ±. Whakawehe 8 ki te 4.
a=-2
Nā, me whakaoti te whārite a=\frac{0±8}{4} ina he tango te ±. Whakawehe -8 ki te 4.
a=2 a=-2
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}