Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}\left(a^{2}\right)^{2}-\frac{12a^{3}-8a}{4a}
Whakarohaina te \left(-6a^{2}\right)^{2}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}a^{4}-\frac{12a^{3}-8a}{4a}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{12a^{3}-8a}{4a}
Tātaihia te -6 mā te pū o 2, kia riro ko 36.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{4a\left(3a^{2}-2\right)}{4a}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{12a^{3}-8a}{4a}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\left(3a^{2}-2\right)
Me whakakore tahi te 4a i te taurunga me te tauraro.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
Hei kimi i te tauaro o 3a^{2}-2, kimihia te tauaro o ia taurangi.
\left(4a^{2}-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2a+1 ki te 2a-1 ka whakakotahi i ngā kupu rite.
36a^{4}+3a^{2}-3-36a^{4}-3a^{2}+2
Whakamahia te āhuatanga tuaritanga hei whakarea te 4a^{2}-1 ki te 9a^{2}+3 ka whakakotahi i ngā kupu rite.
3a^{2}-3-3a^{2}+2
Pahekotia te 36a^{4} me -36a^{4}, ka 0.
-3+2
Pahekotia te 3a^{2} me -3a^{2}, ka 0.
-1
Tāpirihia te -3 ki te 2, ka -1.