Whakaoti mō z
z=\frac{1}{5}+\frac{3}{5}i=0.2+0.6i
Tohaina
Kua tāruatia ki te papatopenga
z=\frac{1+i}{2-i}
Whakawehea ngā taha e rua ki te 2-i.
z=\frac{\left(1+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Me whakarea te taurunga me te tauraro o \frac{1+i}{2-i} ki te haumi hiato o te tauraro, 2+i.
z=\frac{\left(1+i\right)\left(2+i\right)}{2^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(2+i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{1\times 2+i+2i+i^{2}}{5}
Me whakarea ngā tau matatini 1+i me 2+i pēnā i te whakarea huarua.
z=\frac{1\times 2+i+2i-1}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{2+i+2i-1}{5}
Mahia ngā whakarea i roto o 1\times 2+i+2i-1.
z=\frac{2-1+\left(1+2\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+i+2i-1.
z=\frac{1+3i}{5}
Mahia ngā tāpiri i roto o 2-1+\left(1+2\right)i.
z=\frac{1}{5}+\frac{3}{5}i
Whakawehea te 1+3i ki te 5, kia riro ko \frac{1}{5}+\frac{3}{5}i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}