Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=\frac{1+i}{2-i}
Whakawehea ngā taha e rua ki te 2-i.
z=\frac{\left(1+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Me whakarea te taurunga me te tauraro o \frac{1+i}{2-i} ki te haumi hiato o te tauraro, 2+i.
z=\frac{\left(1+i\right)\left(2+i\right)}{2^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(2+i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{1\times 2+i+2i+i^{2}}{5}
Me whakarea ngā tau matatini 1+i me 2+i pēnā i te whakarea huarua.
z=\frac{1\times 2+i+2i-1}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{2+i+2i-1}{5}
Mahia ngā whakarea i roto o 1\times 2+i+2i-1.
z=\frac{2-1+\left(1+2\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+i+2i-1.
z=\frac{1+3i}{5}
Mahia ngā tāpiri i roto o 2-1+\left(1+2\right)i.
z=\frac{1}{5}+\frac{3}{5}i
Whakawehea te 1+3i ki te 5, kia riro ko \frac{1}{5}+\frac{3}{5}i.