Whakaoti mō a
a=\frac{2\left(a_{n}-14\right)}{ia_{n}+4i}
a_{n}\neq -4
Whakaoti mō a_n
a_{n}=\frac{4\left(ia+7\right)}{2-ia}
a\neq -2i
Tohaina
Kua tāruatia ki te papatopenga
\left(2-ai\right)a_{n}+4\left(2-ai\right)=36
Whakamahia te āhuatanga tohatoha hei whakarea te 2-ai ki te a_{n}+4.
\left(2-ia\right)a_{n}+4\left(2-ai\right)=36
Whakareatia te -1 ki te i, ka -i.
2a_{n}-iaa_{n}+4\left(2-ai\right)=36
Whakamahia te āhuatanga tohatoha hei whakarea te 2-ia ki te a_{n}.
2a_{n}-iaa_{n}+4\left(2-ia\right)=36
Whakareatia te -1 ki te i, ka -i.
2a_{n}-iaa_{n}+8-4ia=36
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2-ia.
-iaa_{n}+8-4ia=36-2a_{n}
Tangohia te 2a_{n} mai i ngā taha e rua.
-iaa_{n}-4ia=36-2a_{n}-8
Tangohia te 8 mai i ngā taha e rua.
-iaa_{n}-4ia=28-2a_{n}
Tangohia te 8 i te 36, ka 28.
\left(-ia_{n}-4i\right)a=28-2a_{n}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(-4i-ia_{n}\right)a=28-2a_{n}
He hanga arowhānui tō te whārite.
\frac{\left(-4i-ia_{n}\right)a}{-4i-ia_{n}}=\frac{28-2a_{n}}{-4i-ia_{n}}
Whakawehea ngā taha e rua ki te -ia_{n}-4i.
a=\frac{28-2a_{n}}{-4i-ia_{n}}
Mā te whakawehe ki te -ia_{n}-4i ka wetekia te whakareanga ki te -ia_{n}-4i.
a=-\frac{2\left(14-a_{n}\right)}{ia_{n}+4i}
Whakawehe 28-2a_{n} ki te -ia_{n}-4i.
\left(2-ai\right)a_{n}+4\left(2-ai\right)=36
Whakamahia te āhuatanga tohatoha hei whakarea te 2-ai ki te a_{n}+4.
\left(2-ai\right)a_{n}=36-4\left(2-ai\right)
Tangohia te 4\left(2-ai\right) mai i ngā taha e rua.
\left(2-ia\right)a_{n}=36-4\left(2-ai\right)
Whakareatia te -1 ki te i, ka -i.
2a_{n}-iaa_{n}=36-4\left(2-ai\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2-ia ki te a_{n}.
2a_{n}-iaa_{n}=36-4\left(2-ia\right)
Whakareatia te -1 ki te i, ka -i.
2a_{n}-iaa_{n}=36-8+4ia
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2-ia.
2a_{n}-iaa_{n}=28+4ia
Tangohia te 8 i te 36, ka 28.
\left(2-ia\right)a_{n}=28+4ia
Pahekotia ngā kīanga tau katoa e whai ana i te a_{n}.
\left(2-ia\right)a_{n}=4ia+28
He hanga arowhānui tō te whārite.
\frac{\left(2-ia\right)a_{n}}{2-ia}=\frac{4ia+28}{2-ia}
Whakawehea ngā taha e rua ki te 2-ia.
a_{n}=\frac{4ia+28}{2-ia}
Mā te whakawehe ki te 2-ia ka wetekia te whakareanga ki te 2-ia.
a_{n}=\frac{4\left(ia+7\right)}{2-ia}
Whakawehe 28+4ia ki te 2-ia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}