Aromātai
41-i
Wāhi Tūturu
41
Tohaina
Kua tāruatia ki te papatopenga
2\times 3+2\times \left(7i\right)-5i\times 3-5\times 7i^{2}
Me whakarea ngā tau matatini 2-5i me 3+7i pēnā i te whakarea huarua.
2\times 3+2\times \left(7i\right)-5i\times 3-5\times 7\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
6+14i-15i+35
Mahia ngā whakarea.
6+35+\left(14-15\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
41-i
Mahia ngā tāpiri.
Re(2\times 3+2\times \left(7i\right)-5i\times 3-5\times 7i^{2})
Me whakarea ngā tau matatini 2-5i me 3+7i pēnā i te whakarea huarua.
Re(2\times 3+2\times \left(7i\right)-5i\times 3-5\times 7\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(6+14i-15i+35)
Mahia ngā whakarea i roto o 2\times 3+2\times \left(7i\right)-5i\times 3-5\times 7\left(-1\right).
Re(6+35+\left(14-15\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 6+14i-15i+35.
Re(41-i)
Mahia ngā tāpiri i roto o 6+35+\left(14-15\right)i.
41
Ko te wāhi tūturu o 41-i ko 41.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}