Whakaoti mō x
x=\frac{1}{4}=0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
4-12x+9x^{2}-\left(3x-1\right)\left(3x+1\right)=2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-3x\right)^{2}.
4-12x+9x^{2}-\left(\left(3x\right)^{2}-1\right)=2
Whakaarohia te \left(3x-1\right)\left(3x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4-12x+9x^{2}-\left(3^{2}x^{2}-1\right)=2
Whakarohaina te \left(3x\right)^{2}.
4-12x+9x^{2}-\left(9x^{2}-1\right)=2
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
4-12x+9x^{2}-9x^{2}+1=2
Hei kimi i te tauaro o 9x^{2}-1, kimihia te tauaro o ia taurangi.
4-12x+1=2
Pahekotia te 9x^{2} me -9x^{2}, ka 0.
5-12x=2
Tāpirihia te 4 ki te 1, ka 5.
-12x=2-5
Tangohia te 5 mai i ngā taha e rua.
-12x=-3
Tangohia te 5 i te 2, ka -3.
x=\frac{-3}{-12}
Whakawehea ngā taha e rua ki te -12.
x=\frac{1}{4}
Whakahekea te hautanga \frac{-3}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}