Whakaoti mō x
x=\frac{5}{13}+\frac{14}{13}i-iy
Whakaoti mō y
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
Tohaina
Kua tāruatia ki te papatopenga
x+yi=\frac{4+i}{2-3i}
Whakawehea ngā taha e rua ki te 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Me whakarea te taurunga me te tauraro o \frac{4+i}{2-3i} ki te haumi hiato o te tauraro, 2+3i.
x+yi=\frac{5+14i}{13}
Mahia ngā whakarea i roto o \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Whakawehea te 5+14i ki te 13, kia riro ko \frac{5}{13}+\frac{14}{13}i.
x=\frac{5}{13}+\frac{14}{13}i-yi
Tangohia te yi mai i ngā taha e rua.
x=\frac{5}{13}+\frac{14}{13}i-iy
Whakareatia te -1 ki te i, ka -i.
x+yi=\frac{4+i}{2-3i}
Whakawehea ngā taha e rua ki te 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Me whakarea te taurunga me te tauraro o \frac{4+i}{2-3i} ki te haumi hiato o te tauraro, 2+3i.
x+yi=\frac{5+14i}{13}
Mahia ngā whakarea i roto o \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Whakawehea te 5+14i ki te 13, kia riro ko \frac{5}{13}+\frac{14}{13}i.
yi=\frac{5}{13}+\frac{14}{13}i-x
Tangohia te x mai i ngā taha e rua.
iy=\frac{5}{13}+\frac{14}{13}i-x
He hanga arowhānui tō te whārite.
\frac{iy}{i}=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Whakawehea ngā taha e rua ki te i.
y=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Mā te whakawehe ki te i ka wetekia te whakareanga ki te i.
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
Whakawehe \frac{5}{13}+\frac{14}{13}i-x ki te i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}