Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+yi=\frac{4+i}{2-3i}
Whakawehea ngā taha e rua ki te 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Me whakarea te taurunga me te tauraro o \frac{4+i}{2-3i} ki te haumi hiato o te tauraro, 2+3i.
x+yi=\frac{5+14i}{13}
Mahia ngā whakarea i roto o \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Whakawehea te 5+14i ki te 13, kia riro ko \frac{5}{13}+\frac{14}{13}i.
x=\frac{5}{13}+\frac{14}{13}i-yi
Tangohia te yi mai i ngā taha e rua.
x=\frac{5}{13}+\frac{14}{13}i-iy
Whakareatia te -1 ki te i, ka -i.
x+yi=\frac{4+i}{2-3i}
Whakawehea ngā taha e rua ki te 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Me whakarea te taurunga me te tauraro o \frac{4+i}{2-3i} ki te haumi hiato o te tauraro, 2+3i.
x+yi=\frac{5+14i}{13}
Mahia ngā whakarea i roto o \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Whakawehea te 5+14i ki te 13, kia riro ko \frac{5}{13}+\frac{14}{13}i.
yi=\frac{5}{13}+\frac{14}{13}i-x
Tangohia te x mai i ngā taha e rua.
iy=\frac{5}{13}+\frac{14}{13}i-x
He hanga arowhānui tō te whārite.
\frac{iy}{i}=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Whakawehea ngā taha e rua ki te i.
y=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Mā te whakawehe ki te i ka wetekia te whakareanga ki te i.
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
Whakawehe \frac{5}{13}+\frac{14}{13}i-x ki te i.