Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+\tan(45)}{1-\tan(60)\tan(45)}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\tan(60)\tan(45)}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\tan(45)}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{1-\sqrt{3}\times 1}
Tuhia te \left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1} hei hautanga kotahi.
\frac{\sqrt{3}+2-\left(\sqrt{3}\right)^{2}}{1-\sqrt{3}\times 1}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2-\sqrt{3} ki te \sqrt{3}+1 ka whakakotahi i ngā kupu rite.
\frac{\sqrt{3}+2-3}{1-\sqrt{3}\times 1}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}-1}{1-\sqrt{3}\times 1}
Tangohia te 3 i te 2, ka -1.
\frac{-\left(-\sqrt{3}+1\right)}{-\sqrt{3}+1}
Unuhia te tohu tōraro i roto o \sqrt{3}-1.
-1
Me whakakore tahi te -\sqrt{3}+1 i te taurunga me te tauraro.