Aromātai
-1
Tohaina
Kua tāruatia ki te papatopenga
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+\tan(45)}{1-\tan(60)\tan(45)}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\tan(60)\tan(45)}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\tan(45)}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{1-\sqrt{3}\times 1}
Tuhia te \left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1} hei hautanga kotahi.
\frac{\sqrt{3}+2-\left(\sqrt{3}\right)^{2}}{1-\sqrt{3}\times 1}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2-\sqrt{3} ki te \sqrt{3}+1 ka whakakotahi i ngā kupu rite.
\frac{\sqrt{3}+2-3}{1-\sqrt{3}\times 1}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}-1}{1-\sqrt{3}\times 1}
Tangohia te 3 i te 2, ka -1.
\frac{-\left(-\sqrt{3}+1\right)}{-\sqrt{3}+1}
Unuhia te tohu tōraro i roto o \sqrt{3}-1.
-1
Me whakakore tahi te -\sqrt{3}+1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}