Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
2-\frac{\sqrt[3]{\frac{120+5}{8}}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te 15 ki te 8, ka 120.
2-\frac{\sqrt[3]{\frac{125}{8}}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tāpirihia te 120 ki te 5, ka 125.
2-\frac{\frac{5}{2}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tātaitia te \sqrt[3]{\frac{125}{8}} kia tae ki \frac{5}{2}.
2-\frac{\frac{5}{2}\times \frac{2}{5}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
2-\frac{1}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te \frac{5}{2} ki te \frac{2}{5}, ka 1.
2-\frac{1}{3}\times 3+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tātaitia te \sqrt[3]{27} kia tae ki 3.
2-1+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te \frac{1}{3} ki te 3, ka 1.
1+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tangohia te 1 i te 2, ka 1.
1+\left(-\sqrt{0}\right)\sqrt{400}
Whakareatia te 0 ki te 64, ka 0.
1+0\sqrt{400}
Tātaitia te pūtakerua o 0 kia tae ki 0.
1+0\times 20
Tātaitia te pūtakerua o 400 kia tae ki 20.
1+0
Whakareatia te 0 ki te 20, ka 0.
1
Tāpirihia te 1 ki te 0, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}