Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

2-\frac{\sqrt[3]{\frac{120+5}{8}}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te 15 ki te 8, ka 120.
2-\frac{\sqrt[3]{\frac{125}{8}}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tāpirihia te 120 ki te 5, ka 125.
2-\frac{\frac{5}{2}\sqrt{\frac{4}{25}}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tātaitia te \sqrt[3]{\frac{125}{8}} kia tae ki \frac{5}{2}.
2-\frac{\frac{5}{2}\times \frac{2}{5}}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
2-\frac{1}{3}\sqrt[3]{27}+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te \frac{5}{2} ki te \frac{2}{5}, ka 1.
2-\frac{1}{3}\times 3+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tātaitia te \sqrt[3]{27} kia tae ki 3.
2-1+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Whakareatia te \frac{1}{3} ki te 3, ka 1.
1+\left(-\sqrt{0\times 64}\right)\sqrt{400}
Tangohia te 1 i te 2, ka 1.
1+\left(-\sqrt{0}\right)\sqrt{400}
Whakareatia te 0 ki te 64, ka 0.
1+0\sqrt{400}
Tātaitia te pūtakerua o 0 kia tae ki 0.
1+0\times 20
Tātaitia te pūtakerua o 400 kia tae ki 20.
1+0
Whakareatia te 0 ki te 20, ka 0.
1
Tāpirihia te 1 ki te 0, ka 1.