Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(-3\times \frac{\sqrt{2}}{\sqrt{3}}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{3}}.
2\left(-3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
2\left(-3\times \frac{\sqrt{2}\sqrt{3}}{3}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
2\left(-3\times \frac{\sqrt{6}}{3}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2\left(-\sqrt{6}\right)^{2}
Me whakakore te 3 me te 3.
2\left(-1\right)^{2}\left(\sqrt{6}\right)^{2}
Whakarohaina te \left(-\sqrt{6}\right)^{2}.
2\times 1\left(\sqrt{6}\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
2\times 1\times 6
Ko te pūrua o \sqrt{6} ko 6.
2\times 6
Whakareatia te 1 ki te 6, ka 6.
12
Whakareatia te 2 ki te 6, ka 12.