Aromātai
-\frac{7}{12}\approx -0.583333333
Tauwehe
-\frac{7}{12} = -0.5833333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2\times 4}{9}}{-\frac{2\times 3+2}{3}}-\left(-\frac{1}{2}\right)^{2}
Tuhia te 2\times \frac{4}{9} hei hautanga kotahi.
\frac{\frac{8}{9}}{-\frac{2\times 3+2}{3}}-\left(-\frac{1}{2}\right)^{2}
Whakareatia te 2 ki te 4, ka 8.
\frac{\frac{8}{9}}{-\frac{6+2}{3}}-\left(-\frac{1}{2}\right)^{2}
Whakareatia te 2 ki te 3, ka 6.
\frac{\frac{8}{9}}{-\frac{8}{3}}-\left(-\frac{1}{2}\right)^{2}
Tāpirihia te 6 ki te 2, ka 8.
\frac{8}{9}\left(-\frac{3}{8}\right)-\left(-\frac{1}{2}\right)^{2}
Whakawehe \frac{8}{9} ki te -\frac{8}{3} mā te whakarea \frac{8}{9} ki te tau huripoki o -\frac{8}{3}.
\frac{8\left(-3\right)}{9\times 8}-\left(-\frac{1}{2}\right)^{2}
Me whakarea te \frac{8}{9} ki te -\frac{3}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3}{9}-\left(-\frac{1}{2}\right)^{2}
Me whakakore tahi te 8 i te taurunga me te tauraro.
-\frac{1}{3}-\left(-\frac{1}{2}\right)^{2}
Whakahekea te hautanga \frac{-3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{1}{3}-\frac{1}{4}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{4}{12}-\frac{3}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{1}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{-4-3}{12}
Tā te mea he rite te tauraro o -\frac{4}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{12}
Tangohia te 3 i te -4, ka -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}