Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2}
Whakarohaina te \left(2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x-\left(\sqrt{3}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
4x-3
Ko te pūrua o \sqrt{3} ko 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(2\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2})
Whakaarohia te \left(2\sqrt{x}+\sqrt{3}\right)\left(2\sqrt{x}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(2^{2}\left(\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2})
Whakarohaina te \left(2\sqrt{x}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(4\left(\sqrt{x}\right)^{2}-\left(\sqrt{3}\right)^{2})
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\mathrm{d}}{\mathrm{d}x}(4x-\left(\sqrt{3}\right)^{2})
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\frac{\mathrm{d}}{\mathrm{d}x}(4x-3)
Ko te pūrua o \sqrt{3} ko 3.
4x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
4x^{0}
Tango 1 mai i 1.
4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
4
Mō tētahi kupu t, t\times 1=t me 1t=t.